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QFT With a Mass Gap

I Infinite Set of Asymptotically Conserved Currents
f ∗∂µφin/out − φ∗in/out∂µf . Energy ± for out/in. .

I Fock space is the representation of this current algebra.

I S operator maps in rep to out rep.



Massless Particles and Gauge Theories

I m = 0 always associated with currents.

I In gauge theories, RHS of gauge field equations a covariantly
conserved current.

I Asymptotic gauge field equations express the connection term
in the covariant derivative purely in terms of the asymptotic
gauge field, so that we have a true conserved current.

I Ambiguity in solving field equation allows for a term in the
current linear in the gauge field, a linearized gauge
transformation.

I For the stress tensor, this gives the momentum generators.

I BMSvdB generators spontaneously broken - low energy thms.
but not represented by operators on Hilbert space.
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The Conformal Boundary

I Fourier transform w.r.t. the null coordinate turns Penrose
diamond into momentum light cone.

I T.B.: This is the natural space on which asymptotic
scattering theory lives.

I Lorentz invariance more transparent. Massive particles just
require currents along the null cone as well as transverse to it.

I BMSvdB generators carry no quantum information apart from
amount of momentum emitted at each angle.
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The Asymptotic Hilbert Space

I Apart from Orbital Part of Lorentz Generators, All Other
Operators should be generalized functions J±(P).

I Carry quantum numbers, including helicity/spin
through/along the null boundary.

I If theory admits fermions, Q± i
α (P),

Pa(γa)βαQ
i
β(P) = 0.

If massive, then another current Q̃(P̃) , P̃ = RspaceP.

I [Q̄± i
α (P),Q± j

β (P ′)]+ = Z ijMa(P,P ′)(γa)αβδ(P · P ′).
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Generalized Awada-Gibbons-Shaw Algebra

I Fermionic generators are half measures.

I NOT a proof of the conjecture (Banks 2000) that quantum
theories of gravity in Minkowski space must be SUSic. All
gravitinos could be massive.

I Probably version of CMHLS theorem that says algebras with
higher helicity carrying generators have trivial scattering.
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Scattering Representations of AGS Algebra

I
∫
Q i
α(P)f αi (P)|Scatt〉 = 0, unless

I I. f (P 6= 0) vanishes outside a finite number of spherical caps
with finite opening angle.

I II. f (P = 0) , which is a half measure on the sphere Sd−2,
vanishes in annuli surrounding those caps.

I Strominger, following Christodoulou and Klainerman,
emphasized the importance of P = 0 modes to gravitational
scattering.

I This defines space of Exclusive Sterman- Weinberg jets.
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Local Physics as a Gauge Non-invariant Regulator of
Conformal Boundary

I A finite causal diamond is an equivalence class of time-like
trajectories of proper time from 0 to some maximum.

I A nested sequence of diamonds picks out a unique trajectory.

I Use time along that trajectory to define QM.

I Relativity is restored by insisting QM systems along different
trajectories agree on overlaps of causal diamonds
(entanglement spectra of density matrix for overlap subsystem
are the same).

I Specification of causal diamonds and overlaps along a
sufficiently rich set of trajectories fixes causal structure of
space-time (which DOES NOT fluctuate).
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The Covariant Entropy Principle

I Identify entropy in CEB with maximal entropy density matrix
(Jacobson, Bousso, TB and Fischler).

I Time Dependent Hamiltonian decouples subsystem Hin(t)
from the rest of the Hilbert space, up to time t.

I Dimension of Hin(t) along rich set of trajectories determines
conformal factor .

I Time dependence of Hamiltonian required by insisting slices
remain within the past (e.g. Milne).
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Figure 1: Horizontal slices are FRW, hyperbolic slices are HST.

causal diamond. The HST model has a clear description of both particle and black hole
states, and the transitions between them. Section 3. is a review of the EHI cosmology and
its approximate SL(2) symmetry. The FRW description of this system is a good description
in the limit of large causal diamonds and the real system has no singularity. Section 4. is
the core of this paper. It describes the inflationary model, which we believe is relevant to
the universe we observe. We derive bounds on the maximum temperature of the universe,
which are related to the values of inflationary parameters. This model makes it very explicit
that one must choose low entropy initial conditions in order to have local excitations in the
universe. Further constraints come from insisting that the local excitations are more com-
plex than a few large black holes or the radiation from their decay. We call this excuse for
the low entropy initial conditions a topikès-thropic explanation, from the Greek word topikès
for local. We show that more refined versions of this argument put an upper bound on the
reheat temperature of the universe in the HST model in terms of parameters characterizing
the inflationary era. We also argue that in this framework the number of e-folds is essentially
given by an upper bound we announced some time ago [9]. In this section we also give a
brief review of observational signatures of this model. A more comprehensive paper about
the predictions for two and three point functions of fluctuations will appear shortly [?].

Section 4. also contains brief comments about baryogenesis in the HST model. Our bound
on the reheat temperature allows many conventional low energy mechanisms for baryogen-
esis, but rules out high scale leptogenesis. We also point out the possibility of producing
the baryon asymmetry during the era of black hole decay by applying anthropic arguments
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Variables in a Finite Diamond

I Cutoff on the spectrum of Dirac op. on Holoscreen (TB +
Kehayias).

I In d = 4 Q(P)→ ψi
ab = −ψi

ba. i labels cutoff Dirac
spectrum on internal manifold. Angular momentum cutoff

N = RM
(4)
P gives correct entropy count.

I Magnitude of P emergent, see below

I M ij
ab = ψi

acψ
jcb

I H(t = N − 1,N) = 1
NTrP(M/N) + P0.

I Fast Scrambler because invariant under fuzzy approximation
to group of volume preserving transformations of the sphere.
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Scattering States in a Finite Diamond

I Insist that for large −N states are such that M(i , j) are block
diagonal with a finite number of blocks of size Ei , with∑

Ei � N and one of order N −
∑

Ei .

I
∑

Ei is asymptotically conserved as N →∞
I “Constraints Propagate in the Bulk” : can be followed from
−N to smaller values.

I In some small diamond [−n, n] number of small incoming and
out going blocks and their sizes, will change.

I If
∑

Ei ∼ n, the final state will be “generic”. This is the
formation of large (size n) meta-stable excitation. It will
decay into a state with a less energetic excitation plus a jet
with probability e−cnEjet .
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Variables in a Finite Diamond

I P0 defined “asymptotically” as

P0 =
∑

[Ek +
1

Ek
Tr P(Mk)].

I For out state asymptotically means: at a time N shorter than
the lifetime of the state.

I 1/Ek term describes both interactions of horizon DOF inside
black hole and soft particle emission internal to a jet.

I Details of this need a lot of work.
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HST: Qualitative BH Physics Right for Generic P(M)

I Parametric production, decay, relations between size,
temperature, and mass.

I Resolves Firewall problem: non-singular evolution inside black
hole corresponds to time it takes to excite off diagonal
elements connecting infalling system to BH. ”Mirage as
alternate reality”: non-singular interior reconstructs itself
when something falls on the black hole.

I HST explicitly consistent with unitarity, causality, locality.

I Consistency conditions for trajectories in relative motion not
yet solved.
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A Model of Future Asymptotically de Sitter Space

I Stop growth of Hilbert space at finite size N, but continue
time evolution with H = Hin(N)

I Localized excitations re-absorbed into the “soup” on the
cosmological horizon

I Parametrically reproduces dS temp and properties of horizon

I No Asymptotic symmetries besides time translation and
volume preserving maps, G,of S2

I Special SO(3) subgroup picked out by early time evolution,
but is forgotten after no localized excitations are left.
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