# From null geodesic to gravitational scattering 

 An alternative route from BMS to soft theorems via ambitwistor stringsL.J.Mason

The Mathematical Institute, Oxford<br>lmason@maths.ox.ac.uk

Solvay BMS, infrared, etc., 16 May, 2018

Ambitwistor-strings based on arxiv:1406.1462 with Yvonne Geyer and Arthur Lipstein following on from work by Adamo, Casali \& Skinner and work with Skinner. Builds on CHY. Conformal scattering, w/ Jean-Philippe Nicolas,

## Null geodesics and scattering

( $M^{d}, g$ ) = space-time with Lorentzian metric $g$ which

- is Globally hyperbolic, asymptotically flat/de Sitter
- has conformal compactification $\widetilde{M}=M \cup \mathscr{I}^{+} \cup \mathscr{I}^{-}$,
- null geodesics end on $\mathscr{I}^{-}$in past and $\mathscr{I}^{+}$in future.

Scattering thru $M$ gives symplectic maps for

- null geodesics $T^{*} \mathscr{I}^{-} \rightarrow T^{*} \mathscr{I}^{+}$
- Gravitational field data on $\mathscr{I}^{-}$to data at $\mathscr{I}^{+}$.

Ambitwistor strings gives formulae:
Gravity S-matrix $=\langle\text { Hamiltonians for light ray scattering }\rangle_{\text {string }}$


Asymptotically de Sitter


Asymptotically Flat

## Contents

- Conformal scattering and S-matrix,
- Ambitwistor strings,
- CHY formulae for S-matrix,
- Ambitwistor strings at $\mathscr{I}$,
- Asymptotic symmetries and soft theorems.


## Conformal scattering and gravity tree S-matrix

- Pose asymptotic data $g_{i n}$ : resp. $\pm$ frequency at $\mathscr{I}^{ \pm}$.
- Solve for $g$ on $M$ s.t. $\pm$ freq. parts at $\mathscr{I}^{ \pm}$agree with $g_{\text {in }}$.
- S-matrix is functional of $g_{\text {in }}$

$$
\mathcal{S}\left[g_{i n}\right]=S_{E H}[g]:=\frac{1}{\kappa^{2}} \int_{M} R d \text { vol }+ \text { bdy term } .
$$

- generating fn $\left.g^{\mp}\right|_{\mathscr{J}^{ \pm}}=\partial \mathcal{S} / \partial g_{\mathrm{in}}^{ \pm}$.

Object: Compute/study $\mathcal{S}$ as a functional on the gravitational phase space $\mathcal{P}$ of data at $\mathscr{I}$.

## Geometry of $\mathscr{I}$

## In 4-dims:

- $\mathscr{I}=S^{2} \times \mathbb{R}=$ light cone of origin under inversion.
- Coordinatise $S^{d-2}=\left\{p^{\mu} \mid p^{2}=0, p_{\mu} \sim \alpha p^{\mu}\right\}, \mu=0, \ldots, 3$ and $\mathbb{R}$-factor by $u$ with scaling

$$
\mathscr{I}=\left\{\left(u, p_{\mu}\right) \mid p^{2}=0\right\} /\left\{\left(u, p_{\mu}\right) \sim\left(\alpha u, \alpha p_{\mu}\right)\right\} .
$$

So vertex is $u=\infty$ (inverted from $p^{\mu} / u$ ).

- Flat space lightcone of $x^{\mu} \in M$, intersects $\mathscr{I}$ at:


Framework extends simply to all dimensions.

## Gravitational phase space $\mathcal{P}$

## [Ashtekar 1981]

Choose coords with $\underline{p}_{\mu}=(1, \zeta, \bar{\zeta}, \zeta \bar{\zeta})$ and space-time coordinates ( $R, u, \zeta, \bar{\zeta}$ ) with $R=\frac{1}{r}=0$ on $\mathscr{I}$ so that metric is

$$
R^{2} \mathrm{~d} s^{2}=\mathrm{d} u \mathrm{~d} R+\mathrm{d} \zeta \mathrm{~d} \bar{\zeta}+R\left(\sigma \mathrm{~d} \zeta^{2}+c . c .\right)+O\left(R^{2}\right) .
$$

- gravity data is shear $\sigma(u, \zeta, \bar{\zeta}) \mathrm{d} \zeta^{2}$.
- Finite mass $\Leftrightarrow \partial_{u} \sigma \in L_{\mathscr{g}}^{2}$.
- Supertranslations $u \rightarrow u+f(\zeta, \bar{\zeta})$ act by:

$$
\sigma \rightarrow \sigma+\partial_{\zeta}^{2} f
$$

- Symplectic structure $\Omega\left(\sigma, \sigma^{\prime}\right)=\int_{\mathscr{A}}\left(\bar{\sigma} \partial_{u} \sigma^{\prime}+\right.$ c.c. $) \mathrm{d} u \mathrm{~d}^{2} \zeta$.

Scattering $\sigma_{\mathscr{I}_{-}} \rightarrow \sigma_{\mathscr{I}^{+}}$determined by $\delta \mathcal{S}[\sigma] / \delta \sigma$.

## The perturbative S-matrix

Usually evaluate S-matrix perturbatively

- Pose data $\sigma_{\text {in }}=\left.\sum_{i=1}^{n} \epsilon_{i} \sigma_{i}\right|_{\mathscr{I}}$, and solve for $g$ on $M$.
- For Einstein

$$
S_{E G}[g]=\frac{1}{\kappa^{2}} \int_{M} R d v o l+\int_{\partial M} K d v^{2} l_{\partial M}
$$

and (tree) S-matrix is

$$
\mathcal{M}\left(g_{1}, \ldots, g_{n}\right)=\text { Coeff of } \prod_{i} \epsilon_{i} \text { in } S_{E G}[g]
$$

Use Fourier modes for $g_{j}: \quad g_{j \mu \nu}=\xi_{j \mu} \xi_{j \nu} \mathrm{e}^{i k_{j} \cdot x}$.

- momentum $k_{j}, k_{j}^{2}=0$.
- polarization data satisfies

$$
k \cdot \xi=0, \quad \xi \sim \xi+\alpha k .
$$

For $n$-particle scattering $\mathcal{M}(1, \ldots, n)=\mathcal{M}\left(k_{1}, \xi_{1}, \ldots, k_{n}, \xi_{n}\right)$.
Compute by Feynman diagrams or ambitwistor-strings.

## Ambitwistors

Ambitwistor spaces: spaces of complex null geodesics $\mathbb{A}$.

- Extends Penrose/Ward's gravity/Yang-Mills twistor constructions to non-self-dual fields.
- Yang-Mills witten and lsenberg, et. al. $1978,1985$.
- Conformal and Einstein gravity Lebun [1983,1991]


Baston \& M. [1987] .
Ambitwistor Strings (strings at $\alpha^{\prime}=0$ for field theories):

- Twistor-string for $N=4$ Yang-Mills [witen, Roiban, Spradiin, Volovich, 20034].
- $N=8$ supergravity [Cachazo, Geyer, Skiner, M. 2012], SSkiner, 2013]
- Tree S-Matrices in all dimensions for gravity, YM etc. [chY]
- From strings in ambitwistor space [m. \& skiner 2013] $\rightarrow$ vast generalization of original twistor-string; many theories \& dimensions (i.e., Einstein-YM, DBI, BI, NLSM).
- Gives worldsheet version of soft theorems $\leftrightarrow$ BMS without Ward identities at $\mathscr{I}$ (in contrast with Strominger et. al.).


## Geometry of ambitwistor space

Complexify: real $d$-diml space-time $\left(M_{\mathbb{R}}, g_{\mathbb{R}}\right) \leadsto(M, g)$.

- $\mathbb{A}:=$ space of scaled complex null geodesics.
- For $\left(P_{\mu}, X^{\nu}\right) \in T^{*} M$ let $D_{0}:=P \cdot \nabla=$ geodesic spray.

$$
\mathbb{A}=\left.T^{*} M\right|_{P^{2}=0} /\left\{D_{0}\right\}
$$

- $D_{0}$ has Hamiltonian $P^{2}$ wrt symplectic form $\omega=d P_{\mu} \wedge d x^{\mu}$.
- Symplectic potential $\theta=P_{\mu} d x^{\mu}, \omega=d \theta$, descend to $\mathbb{A}$.

Study with double fibration

$$
\left.T^{*} M\right|_{P 2=0}
$$

$$
q \swarrow D_{0}
$$

## LeBrun correspondence

Projectivise: $P \mathbb{A}:=$ space of unscaled complex light rays.

- On $P \mathbb{A}, \theta$ defines a holomorphic contact structure.


## Theorem (LeBrun 1983)

The complex structure on $P \mathbb{A}$ determines $M$ and conformal metric $g$. The correspondence is stable under arbitrary deformations of the complex structure of $P \mathbb{A}$ that preserve $\theta$.


## Linearized LeBrun correspondence

$\theta$ determines complex structure on $P \mathbb{A}$ via $\theta \wedge d \theta^{d-2}$. So:
Deformations of complex structure $\leftrightarrow[\delta \theta] \in H_{\bar{\partial}}^{1}(P \mathbb{A}, L)$.
Key example: On flat space-time, set $\delta g_{\mu \nu}=\mathrm{e}^{i k \cdot x} \epsilon_{\mu \nu}$ then

$$
\delta \theta=\bar{\delta}(k \cdot p) \mathrm{e}^{\mathrm{i} \cdot \cdot q / \omega_{\epsilon_{\mu \nu}} p^{\mu} p^{\nu}, ~}
$$

where $\bar{\delta}(z)=\bar{\partial} \frac{1}{2 \pi i z}$.

- Dolbeault form of Penrose's scattering Hamiltonian for null geodesics from $\mathscr{I}^{-}$to $\mathscr{I}^{+}$,

$$
\delta \theta=\bar{\partial} h, \quad h=\mathrm{e}^{i k \cdot q / w} \frac{\epsilon_{\mu \nu} p^{\mu} p^{\nu}}{k \cdot p}=\int_{\gamma} \delta g_{\mu \nu} p^{\mu} p^{\nu} d s
$$

- $h=$ gravitational Wilson-line (Hamilton-Jacobi fn for null geodesic scattering $T * \mathscr{I}^{-} \rightarrow T^{*} \mathscr{I}^{+}$).
- Support on $k \cdot p=0 \Rightarrow$ the scattering equations.


## Ambitwistor strings

Take Riemann surface $\Sigma \ni \sigma$, want holomorphic maps $\Sigma \rightarrow \mathbb{A}$.

- Let $X^{\mu}(\sigma): \Sigma \rightarrow M, P_{\mu} \in T_{X}^{*} M \otimes \Omega_{\Sigma}^{1,0}$.

$$
S=\int P_{\mu} \bar{\partial} X^{\mu}-e P_{\mu} P^{\mu} / 2
$$

with $e \in \Omega^{0,1} \otimes T, T=T^{1,0} \Sigma$.

- $e \leadsto P^{2}=0$,
- gauge: $\delta(X, P, e)=(\alpha P, 0,2 \bar{\partial} \alpha)$.

Solutions mod gauge are holomorphic maps to

$$
\mathbb{A}=\left.T^{*} M\right|_{P^{2}=0} /\{\text { gauge }\}
$$

## Ambitwistor strings

Take Riemann surface $\Sigma \ni \sigma$, want holomorphic maps $\Sigma \rightarrow \mathbb{A}$.

- Let $X^{\mu}(\sigma): \Sigma \rightarrow M, P_{\mu} \in T_{X}^{*} M \otimes \Omega_{\Sigma}^{1,0}$.

$$
S=\int P_{\mu} \bar{\partial} X^{\mu}-e P_{\mu} P^{\mu} / 2
$$

with $e \in \Omega^{0,1} \otimes T, T=T^{1,0} \Sigma$.

- $e \sim P^{2}=0$,
- gauge: $\delta(X, P, e)=(\alpha P, 0,2 \bar{\partial} \alpha)$.

Solutions mod gauge are holomorphic maps to

$$
\mathbb{A}=\left.T^{*} M\right|_{P^{2}=0} /\{\text { gauge }\} .
$$

For gravity must add type II worldsheet susy $S_{\Psi_{1}}+S_{\Psi_{2}}$ where

$$
S_{\psi}=\int_{\Sigma} \Psi_{\mu} \bar{\partial} \Psi^{\mu}+\chi P \cdot \Psi
$$

## Gravity Vertex operators and CHY

- NS sector of type II SUGRA $\delta g_{\mu \nu}+\delta B_{\mu \nu}=\epsilon_{1 \mu} \epsilon_{2 \nu} \mathrm{e}^{i k \cdot x}$ gives

$$
\begin{aligned}
V_{i} & =\int_{\Sigma} \delta \theta \\
& =\int_{\Sigma} \mathrm{e}^{i k \cdot q / w} \bar{\delta}(k \cdot p) \prod_{r=1}^{2} \epsilon_{r \mu}\left(p^{\mu}+\Psi_{r}^{\mu} k \cdot \Psi_{r}\right) \\
& =\oint \frac{\mathrm{e}^{i k \cdot q / w}}{k \cdot p} \prod_{r=1}^{2} \epsilon_{r \mu}\left(p^{\mu}+\Psi_{r}^{\mu} k \cdot \Psi_{r}\right)
\end{aligned}
$$

contour around $k \cdot p=0$ last equality from $\bar{\delta}(k \cdot p)=\bar{\partial} \frac{1}{k \cdot p}$.

- There are also 2 fixed vertex operators $U_{i}$ needed.
- Key result: Correlator gives CHY gravity formula:

$$
\left\langle U_{1} U_{2} V_{3} \ldots V_{n}\right\rangle_{\text {string }}=\int \frac{P f_{l} P f_{r}}{v o l S L_{2} \times \mathbb{C}^{3}} \prod_{i=1}^{n} \bar{\delta}\left(k_{i} \cdot P\left(\sigma_{i}\right)\right) d \sigma_{i}
$$

## The scattering equations

Take $n$ null momenta $k_{i} \in \mathbb{R}^{d}, i=1, \ldots, n, k_{i}^{2}=0, \sum_{i} k_{i}=0$,

- define $P: \mathbb{C P}^{1} \rightarrow \mathbb{C}^{d}$

$$
P(\sigma):=\sum_{i=1}^{n} \frac{k_{i}}{\sigma-\sigma_{i}}, \quad \sigma, \sigma_{i} \in \mathbb{C P}^{1}
$$



- Solve for $\sigma_{i} \in \mathbb{C P}^{1}$ with the $n$ scattering equations ${ }_{\text {[Faririe } 1972]}$

$$
\begin{aligned}
& \operatorname{Res}_{\sigma_{i}}\left(P^{2}\right)=k_{i} \cdot P\left(\sigma_{i}\right)=\sum_{j=1}^{n} \frac{k_{i} \cdot k_{j}}{\sigma_{i}-\sigma_{j}}=0 . \\
\Rightarrow & P^{2}=0 \forall \sigma .
\end{aligned}
$$

- For Mobius invariance $\Rightarrow P \in \mathbb{C}^{d} \otimes \Omega^{1,0} \mathbb{C P}^{1}$
- There are $(n-3)$ ! solutions.

Arise in large $\alpha^{\prime}$ strings [Gross-Mende 1988] \& twistor-strings [Roiban, Spradin,
Volovich, Witten 2004].

## Amplitude formulae for massless theories.

## Proposition (Cachazo, He, Yuan 2013,2014)

Tree-level massless amplitudes in d-dims are integrals/sums

$$
\mathcal{M}_{n}=\delta^{d}\left(\sum_{i} k_{i}\right) \int_{\left(\mathbb{C P}^{1}\right)^{n}} \frac{\mathcal{I}^{\prime} \mathcal{I}^{r} \prod_{i} \bar{\delta}\left(k_{i} \cdot P\left(\sigma_{i}\right)\right)}{\operatorname{Vol~SL} L_{2} \times \mathbb{C}^{3}}
$$

where $\mathcal{I}^{1 / r}=\mathcal{I}^{1 / r}\left(\epsilon_{i}^{1 / r}, k_{i}, \sigma_{i}\right)$ depend on the theory.

- polarizations $\epsilon_{i}^{l}$ for spin $1, \epsilon_{i}^{\prime} \otimes \epsilon_{i}^{r}$ for spin-2 $\left(k_{i} \cdot \epsilon_{i}=0 \ldots\right)$.
- Introduce skew $2 n \times 2 n$ matrices $M=\left(\begin{array}{cc}A & C \\ -C^{t} & B\end{array}\right)$,

$$
A_{i j}=\frac{k_{i} \cdot k_{j}}{\sigma_{i}-\sigma_{j}}, \quad B_{i j}=\frac{\epsilon_{i} \cdot \epsilon_{j}}{\sigma_{i}-\sigma_{j}}, \quad C_{i j}=\frac{k_{i} \cdot \epsilon_{j}}{\sigma_{i}-\sigma_{j}}, \quad \text { for } i \neq j
$$

and $A_{i j}=B_{i j}=0, C_{i i}=\epsilon_{i} \cdot P\left(\sigma_{i}\right)$.

- For Yang-Mills, $\mathcal{I}^{\prime}=P f^{\prime}(M), \mathcal{I}^{r}=\prod_{i} \frac{1}{\sigma_{i}-\sigma_{i-1}}$.
- For Gravity $\mathcal{I}^{\prime}=P f^{\prime}\left(M^{\prime}\right), \mathcal{I}^{r}=P f^{\prime}\left(M^{r}\right)$.


## Ambitwistors at $\mathscr{I}: \mathbb{A}=T^{*} \mathscr{I}$

- $\mathscr{I}=$ light cone coordinatised with $\frac{p^{\mu}}{u}$ null (vertex $u=\infty$ )

$$
\mathscr{I}=\left\{\left(u, p_{\mu}\right) \mid p^{2}=0\right\} /\left\{\left(u, p_{\mu}\right) \sim\left(\alpha u, \alpha p_{\mu}\right)\right\} .
$$

- Let $\left(w, q^{\mu}\right)$ be momenta for $\left(u, p_{\mu}\right)$, so

$$
\theta=w \mathrm{~d} u-q^{\mu} \mathrm{d} p_{\mu}
$$

- Scaling $\alpha$ acts by $\left(w, q^{\mu}\right) \sim\left(w / \alpha, q^{\mu} / \alpha\right)$, generated by

$$
w u-p \cdot q
$$

- Hamiltonian quotient $w u-p \cdot q=0 \leadsto$ original model by

$$
u=p_{\mu} x^{\mu}, \quad x^{\mu}=q^{\mu} / w, \quad P_{\mu}=w p_{\mu}
$$

gives incidence:


## Ambitwistor strings at $\mathscr{I}$

- For gravity must include SUSY with Fermionic $\Psi_{r}^{\mu}, r=1,2$

$$
\theta=w \mathrm{~d} u-q^{\mu} \mathrm{d} p_{\mu}+\Psi_{r}^{\mu} \mathrm{d} \Psi_{r \mu} .
$$

with supersymmetries generated by $w p \cdot \psi_{r}$.

- Worldsheet action gauges constraints $p^{2}=w u-p \cdot q=0$ :

$$
S=\int_{\Sigma} w \bar{\partial} u-q^{\mu} \bar{\partial} p_{\mu}+\Psi_{r}^{\mu} \bar{\partial} \Psi_{r \mu}+e p^{2}+a(w u-p \cdot q)+\chi_{r} w p \cdot \Psi_{r}
$$

- Usual string proposal

$$
\mathcal{M}\left(g_{1}, \ldots, g_{n}\right)=\int D[u, q, p, \ldots] V_{1} \ldots V_{n} \mathrm{e}^{i S}=:\left\langle V_{1} \ldots V_{n}\right\rangle
$$

where $V_{i}=$ vertex operators $=\delta \theta \leftrightarrow \delta g_{\mu \nu}$ etc..

## Action of BMS

For us BMS group are diffeos of $\mathscr{I}$ consisting of

- Supertranslations

$$
\left(u, p_{\mu}\right) \rightarrow\left(u+f(p), p_{\mu}\right) .
$$

reducing to translations if $f(p)=a^{\mu} p_{\mu}$.

- Rotations generated by $r_{\mu \nu}=r_{[\mu \nu]}$, i.e., $\delta p_{\mu}=-r_{\mu}^{\nu} p_{\nu}$.
- Super-rotations when $r_{\mu \nu}(p)$ depends on $p$ of weight 0 .

On $\mathbb{A}$ these are respectively generated by Hamiltonians

$$
H_{f}=w f(p), \quad H_{r}=r_{\mu \nu}\left(p^{\mu} q^{\nu}+w \Psi_{r}^{\mu} \Psi_{r}^{\nu}\right)
$$

- Superrotations that are not rotations are never symmetries.
- Supertranslations are only symmetries in dimension $d=4$.


## Diffeomorphisms of $\mathbb{A}$ and worldsheet charges

 Hamiltonian diffeos of $\mathbb{A}$ generated by Hamiltonian $h\left(u, p_{\mu}, w, q^{\mu}\right)$ represented by worldsheet charges$$
Q_{h}=\oint h
$$

- Vertex operators are examples that arise from

$$
h=\frac{\mathrm{e}^{\mathrm{i} k \cdot q / w}}{k \cdot p} \prod_{r=1}^{2} \epsilon_{r \mu}\left(p^{\mu}+\psi_{r}^{\mu} k \cdot \psi_{r}\right)
$$

diffeo that corresponds to $\mathscr{I}^{-} \rightarrow \mathscr{I}^{+}$scattering.

- Supertranslations and (super)-rotations

$$
Q_{f}=\oint w f(p), \quad Q_{r}=\oint r_{\mu \nu}(p) J^{\mu \nu}
$$

where

$$
J^{\mu \nu}=\left(p^{[\mu} q^{\nu]}+w \Psi_{r}^{\mu} \Psi_{r}^{\nu}\right)
$$

is the angular momentum operator incorporating spin.

## Subleading soft theorems

Theorem (Low, Weinberg, Cachazo, Strominger, ...)
Let $k_{n+1}=s \rightarrow 0$ and expand in $s$. We have

$$
\mathcal{M}(1, \ldots, n+1) \rightarrow\left(S_{0}+S_{1}+\ldots\right) \mathcal{M}(1, \ldots, n)
$$

where
$S_{0}=\sum_{a=1}^{n} \frac{\left(\epsilon \cdot k_{a}\right)^{2}}{s \cdot k_{a}}, \quad S_{1}=\frac{\epsilon_{\mu \nu} k_{a}^{\mu} s_{\lambda} J_{a}^{\lambda \nu}}{s \cdot k_{a}}, \quad S_{2}=\frac{\epsilon_{\mu \nu}\left(s_{\lambda} J_{a}^{\lambda \mu}\right)\left(s_{\rho} J_{a}^{\rho \nu}\right)}{s \cdot k_{a}}$
$J^{\mu \nu}$ is the angular momentum operator incorporating spin.

## Subleading soft theorems from the worldsheet

- In ambitwistor string, expand the vertex op $V_{n+1}=V_{s}$ in $s$ :

$$
\begin{aligned}
V_{s} & =\oint \frac{w \mathrm{e}^{i s \cdot q / w}}{s \cdot p} \prod_{r=1}^{2} \epsilon_{r \mu}\left(p^{\mu}+i \Psi_{r}^{\mu} \Psi_{r} \cdot s\right) \\
& =V_{s}^{0}+V_{s}^{1}+V_{s}^{2}+V_{s}^{3}+\ldots
\end{aligned}
$$

where $V_{s}^{0}=\oint w \frac{(\epsilon \cdot p)^{2}}{s \cdot p}$,

$$
V_{s}^{1}=\oint \frac{\epsilon \cdot p}{s \cdot p} \epsilon^{\mu} s^{\nu}\left(p_{[\mu} q_{\nu]}+w \sum_{r=1}^{2} \Psi_{r \mu} \Psi_{r \nu}\right)=\oint \frac{\epsilon \cdot p}{s \cdot p} \epsilon^{\mu} s^{\nu} J_{\mu \nu}
$$

- $V_{s}^{0}$ generates super-translation and $V_{s}^{1}$ super-rotations

$$
f(p)=\frac{(\epsilon \cdot p)^{2}}{s \cdot p}, \quad r^{\mu \nu}(p)=\frac{\epsilon \cdot O \epsilon^{[\mu} s^{\nu]}}{s \cdot p}
$$

- Proof: $\{$ residue at $s \cdot p=0\}=\left\{\sum\right.$ residues at $\left.\sigma_{s}-\sigma_{i}=0\right\}$.
- Slogan: Soft graviton $=$ supertrans. + superrotation $+\ldots$.
- At higher order $\leadsto$ diffeo of $T^{*} \mathscr{I}$ not lifted from $\mathscr{I}$.


## Summary

- Gravity vertex operators = generators of diffeos of $\mathbb{A}$ for null geodesic scattering through space-time.
- These are essentially gravitational 'Wilson lines'.
- On-shell condition is quantum worldsheet consistency.
- In soft limit: gravity vertex op $\rightarrow$ gen. BMS generator.
- Our BMS is not symmetry; always singular even in 4d.
- Distinction from Strominger et. al.:
- they use Ashtekar Fock space \& divide gravitons into hard and soft parts, obtain soft theorem as Ward identity.
- We re-interpret worldsheet gravity vertex op as singular diffeo; these are not symmetries, no Ward identity.
- Appropriate 2d CFT for Strominger argument is that of ambitwistor string!
- Manifests BCJ double copy, YM vs GR.

Outlook

- Similar story at horizons?
- definitions on curved backgrounds, cf [Adamo, Casali \& Skinner 2014] and recent work [Adamo, Casali, M. \& Nekovar 2017-8].

The end

Thank You!

