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A. Einstein with mathematician A. Hurwitz and his daugther L. Hurwitz.



Spacetimes

Definition

Spacetimes (M, g), where M a 4-dimensional manifold with Lorentzian
metric g solving Einstein’s equations:

Gµν := Rµν −
1

2
gµν R = 2 Tµν ,

where
Gµν is the Einstein tensor,
Rµν is the Ricci curvature tensor,
R the scalar curvature tensor,
g the metric tensor and
Tµν denotes the energy-momentum tensor.



Asymptotically Flat versus Cosmological Spacetimes

In the cosmological case, we add to the original Einstein equations the
term containing Λ, the positive cosmological constant:

Rµν −
1

2
gµν R + Λgµν= 8π Tµν , (1)

Asymptotically Flat Spacetimes: Fall-off (in particular of metric and
curvature components) towards Minkowski spacetime at infinity. Natural
definition of “null infinity” ⇒ understand gravitational radiation.

These are solutions of the original Einstein equations with asymptotically
flat initial data.

Cosmological Spacetimes: Solutions of the cosmological Einstein
equations (1). “Null infinity is spacelike”. ⇒ no “natural” way to discuss
radiation.



Postcard from Albert Einstein to Hermann Weyl, 1923
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Einstein was not the only one to feel uncomfortable about de Sitter’s

Pandora’s box. Eddington’s comments show that he was not happy with the

situation in cosmology, and several years later Robertson expressed the hope to

have found a mathematical solution in which many of de Sitter’s apparent

paradoxes were eliminated (Robertson 1928). It is all the more astonishing

that Einstein, in 1922, and again in 1923, brushed aside Friedmann’s dynamical

solution of the Einstein equations. He did the same in 1927 when Lemaı̂tre

showed him his discovery of the expanding universe, corroborated with theore-

tical and observational evidence. We will come back to these two episodes.

The interpretation of the de Sitter type models was never easy, having to

do with the concept of time, and at least as much with the freedom to play

with coordinate systems. When discussing Einstein’s and his models (models

A and B respectively in his terminology), de Sitter said: ‘In both systems A and B

it is always possible, at every point of the four-dimensional space-time, to find

systems of reference in which the gμν depend only on one space-variable (the

“radius-vector”), and not on “time”. In the system A the “time” of these systems

of reference is the same always and everywhere, in B it is not. In B there is no

Fig. 6.5 Einstein’s postcard to Weyl. Written on Tuesday before Whitsun, which

corresponds to 23 May 1923. Note the postage of 180 Mark; this is a witness of the

beginning of the proper German hyperinflation. (ETH-Bibliothek, Zurich, Einstein

Archiv.)
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about the nebular velocities. He came away with the impression that Einstein

was not at all well informed about astronomical facts. It is very likely that it was

on this occasion that Lemaı̂tre learnt from Einstein about Friedmann’s earlier

venture into cosmology.

Einstein’s conversation with Lemaı̂tre reminds us of his reaction to Friedmann.

He first refused the dynamical universe for mathematical reasons. When he

recognised that this reproach was untenable, Einstein retracted. However,

Fig. 9.5 Lemaı̂tre and Einstein. Georges Lemaı̂tre (1894–1966) and Albert Einstein

(1879–1955), photographed around 1933. (Archives Lemaı̂tre, Université Catholique,

Louvain.)

112 Discovering the Expanding Universe



A Few Early Highlights

1915: Albert Einstein formulates the field equations of GR.

1916: Karl Schwarzschild derives first solution to Einstein equations.

1917: Einstein introduces the cosmological term into the Einstein
equations. First cosmological solutions by Albert Einstein and
Willem de Sitter.

1919: Arthur Eddington’s expedition confirms light bending.

1922: Alexander Friedmann derives dynamical cosmological
solutions.

1927: Georges Lemâıtre derives further dynamical solutions and
combines them with Vesto Slipher’s observations of redshifts in
galaxies and with Edwin Hubble’s distance measurements. Lemâıtre
derives that the Universe is expanding. He computes the linear
velocity-distance relationship v = H · d.

1929: Edwin Hubble confirms this relation.



Energy in GR

At a point the gravitational field can be transformed away.

How to define energy?

For certain systems, we can define quasi-local energies, or energy of a
spacelike hypersurface or energy of a null hypersurface.

Albert Einstein formulated an energy-momentum theorem for his closed
universe , most of his colleagues did not agree with its formulation:

“While the general relativity theory was approved by most

theoretical physicists and mathematicians, almost all

colleagues object to my formulation of the energy-momentum

theorem.”

(Albert Einstein, 1918. “Der Energiesatz in der allgemeinen
Relativitätstheorie.” SAW, 448-459. Translated from German.)



From the Bianchi identity

∇[αRβγ]δε = 0

we compute the twice contracted Bianchi identity

∇jGij = 0 .

This implies that

∇jTij = 0.

However...



Noether Theorems

Noether: Within the setting of a Lagrangian theory to each continuous
group of transformations leaving the Lagrangian invariant there
corresponds a quantity which is conserved.

Photo: public domain.



GR - “A Special Universe”

In GR ⇒ General spacetimes do not have any symmetries.

However... certain things can be done.

Let’s first see how Einstein, Hilbert and Weyl struggled towards finding
“energy components of the gravitational field”.



Hermann Weyl on Conserved Quantities

Hermann Weyl wrote the following about invariant conserved quantities.
From the book: “Raum-Zeit-Materie” (“Space-Time-Matter”), Hermann
Weyl, 1921, Springer-Verlag. Translated from German:

Nevertheless it seems to be physically meaningless to

introduce the tki (Einstein pseudo-tensor based on a

specific Lagrangian) as energy components of the

gravitational field; for, these quantities are neither a

tensor nor are they symmetric. In fact by choosing an

appropriate coordinate system all the tki can be made to

vanish at any given point; ... Although the differential

relations (referring to a divergence of the Einstein

pseudo-tensor being zero) are without a physical meaning,

nevertheless by integrating them over an isolated system

one gets invariant conserved quantities.



Energies Control the Curvature

Use Bel-Robinson Tensor to do Energy Estimates

Bel-Robinson tensor:
Associate to a Weyl field a tensorial quadratic form:
• a 4-covariant tensorfield
• being fully symmetric and trace-free.

Qαβγδ =
1

2
(Wαργσ W

ρ σ
β δ + ∗Wαργσ

∗W ρ σ
β δ ) .

It satisfies the following positivity condition:

Q (X1, X2, X3, X4) > 0

X1, X2, X3, X4 future-directed timelike vectors. For W satisfying the
Bianchi equations:

Dα Qαβγδ = 0 .

Notation: Hodge duals ∗W and W ∗ defined as

∗Wαβγδ =
1

2
εαβµνW

µν
γδ

W ∗αβγδ =
1

2
W µν
αβ εµνγδ



Current

Contract Qαβγδ with three future-directed causal vectorfields X,Y, Z

to obtain a current

Jα := QαβγδX
βY γZδ (2)

Apply the divergence theorem
on a bounded domain Ω ⊂M in the spacetime M .

Curvature Flux:

If ∂Ω contains a portion of a null hypersurface C with affine tangent null
vectorfield L, then the corresponding boundary term is the curvature flux

through C and is given by

F =

∫
C

JαL
αdµgC (3)

with dµgC being the canonical volume form on C associated to L.



Solving Einstein Equations

Want: Answers to problems in physics and astrophysics, insights into
mathematical structures of spacetimes.

Have to: Give initial data describing situations from astrophysics and
physics and then solve the Einstein equations.

In order to understand the dynamics of the gravitational field, stability
properties, and to get information on the asymptotics

⇒ We have to solve the initial value problem for the Einstein equations
for various classes of spacetimes.

⇒ Investigate their structures ⇒ to derive information about
gravitational radiation and memory.

Caution: Even if a spacetime is a solution to the Einstein equations or to
Einstein equations coupled to other fields or matter, then in general, one
does not know their local and global behavior nor their asymptotics. All
kinds of behavior could change the asymptotics. Only the full
mathematical investigation of these spacetimes gives an answer.



“The Beginnings”

“Pioneers” include (more names to be added...)

D. Hilbert, H. Weyl, A.S. Eddington, W. de Sitter, A. Friedmann, G.
Lemâıtre, T. de Donder, C. Lanczos, G. Darmois, A. Lichnerowicz, J.
Leray, K. Stellmacher, K. Friedrichs, K. Schwarzschild, Y.
Choquet-Bruhat. On the analysis side, important progress that influenced
GR came with the works by H. Lewy, J. Hadamard, J. Schauder and S.
Sobolev among many others. - Photos of Hermann Weyl, Yvonne Choquet-Bruhat. Copyright Notice:

Courtesy of ETH-Bibliothek Zürich and MFO, MFO License, see http://owpdb.mfo.de/.



Global Solutions - Stability of Minkowski Space

Semiglobal Result: [H. Friedrich (1986)]

Global Result by S. Klainerman and D. Christodoulou, 1991, proving the
global nonlinear stability of Minkowski spacetime.

Theorem [D. Christodoulou and S. Klainerman for EV (1991)]

Every asymptotically flat initial data which is globally close to the trivial
data gives rise to a solution which is a complete spacetime tending to the
Minkowski spacetime at infinity along any geodesic.

Generalizations of the Christodoulou-Klainerman Result:

[N. Zipser for EM (2000)] Generalization for Einstein-Maxwell case.

[L. Bieri for EV (2007)] Generalization in the Einstein-vacuum case
obtaining borderline estimates for decay.

All the above: geometric-analytic proofs, exact solutions.

Long list of other results and partial results. Works by many authors:
Including but not complete: Y. Choquet-Bruhat, H. Friedrich, R. Geroch,
S. Hawking, H. Lindblad, F. Nicolò, R. Penrose, I. Rodnianski, and more.
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Foliation by a time function t
⇒ spacelike, complete Riemannian hypersurfaces Ht.

Foliation by a function u
⇒ null hypersurfaces Cu.

St,u = Ht ∩ Cu



Future Null Infinity

Null Infinity

Future null infinity I+ is defined to be the endpoints of all
future-directed null geodesics along which r →∞. It has the topology of
R× S2 with the function u taking values in R.

Thus a null hypersurface Cu intersects I+ at infinity in a 2-sphere S∞,u.

Black Hole Region

We define the black hole region of an asymptotically flat spacetime
(M, g) to be the set of points B ⊂M not in the past of future null
infinity I+. We write B = M\J−(I+).

Remark: The causal past J−(p) of a point p ∈ M is defined to be the set of all points q ∈ M for which there exists a past-directed

causal curve initiating at p and ending at q.



Gravitational Waves - Energy Radiated

Fluctuation of curvature of the spacetime

propagating as a wave.

Gravitational waves:

Localized disturbances in the geometry propagate at the speed of light,

along outgoing null hypersurfaces.

source

I
+

I
+

H

observe gravitational waves

Gravitational radiation: gravitational waves traveling from source along outgoing null hypersurfaces.
Picture: Courtesy of NASA.



Memory Effect of Gravitational Waves

Gravitational waves traveling from their source to our experiment. Three
test masses in a plane as follows. The test masses will experience

1 Instantaneous displacements (while the wave packet is traveling
through)

2 Permanent displacements (cumulative, stays after wave packet
passed). This is called the memory effect of gravitational waves.
Two types of this memory.

Class. Quantum Grav. 29 (2012) 000000 L Bieri et al

Figure 2. Permanent displacement of test masses caused by Christodoulou memory effect. Test
masses m1 and m2 are displaced permanently after the passage of a gravitational wave train.

p 1488: ‘When matter (i.e. electromagnetic or neutrino) radiation is present then if T is the
energy tensor of matter, φ∗

u (r2 1
4 T (l, l)) tends to a limit E as r∗

0 → ∞ and in (7)–(9) | � |2
is replaced by | � |2 +32πE.’ This is a suggestion, in which direction one would have to
search to find other contributions to the nonlinear memory effect. It was not known, what
the limit E would be. This limit E depending on u could behave in such a way that there
were no additive contribution from E to the memory, or that it was negligible. Studying the
adapted formulas (7)–(9) in Christodoulou (1991), one has to keep in mind that formula (9)
governs the nonlinear memory effect. It is an additive effect. How do we know that E is in fact
contributing? What is the structure of this limit? We give the answer in our formulas (15) and
(6) based on Bieri et al (2010) and on (2) from Zipser (2009). Our formula (6) corresponds to
Christodoulou’s formula (9). We find that the limit AF has the same decay behavior in u as the
limit �. Namely they satisfy

| AF (u, ·) | � C1(1+ | u |)− 3
2

| �(u, ·) | � C2(1+ | u |)− 3
2

Knowing these structure, we investigate our formula (6) more closely. Integrating with
respect to u from −∞ to +∞ yields a positive constant for F . This value contains the
corresponding positive constants coming from the electromagnetic field term AF and from
the purely gravitational term �. This proves that the contribution from the electromagnetic
field is of the same order6 as the purely geometric part. Our result being exact, it holds for all
corresponding physical situations. The constants C1 and C2 have to be determined or estimated
from astrophysical data of the many scenarios. This will be the purpose of the following
section, where we give rough estimates. It will be a challenge for the future to work on the
many details.

Summarizing, we have in (6) a general formula that always holds. Thus we can apply it to
all situations. From astrophysical data we can now determine the corresponding contributions
in every scenario.

6 Here, the word ‘order’ refers to decay behavior of the exact solution, not to any approximations. That is, ‘higher
order’ means ‘less decay’. For details, see Bieri et al (2010), Bieri (2009), Zipser (2009).
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Memory - Continued - Isolated Systems

Ordinary (formerly called “linear”) effect
=> was known for a long time in the slow motion limit [Ya.B.

Zel’dovich, A.G. Polnarev 1974]

Null (formerly called “nonlinear”) effect
=> was found by [D. Christodoulou 1991].

Ya. B. Zel’dovich A. G. Polnarev D. Christodoulou



Early Works on Memory

T. Damour, L. Blanchet, V. B. Braginsky, L. P. Grishchuk, C. M. Will ,
A. G. Wiseman, K. S. Thorne, J. Frauendiener.

Other Related Early Works:
[A. Ashtekar and various co-authors (1970s and 1980s)] Studies of
asymptotic symmetries in GR and infrared problems in quantum field
theory.



Memory - Continued - Isolated Systems

Contribution from electro-magnetic field to null effect
=> was found by [L. Bieri, P. Chen, S.-T. Yau 2010 and 2011].

Contribution from neutrino radiation to null effect
=> was found by [L. Bieri, D. Garfinkle 2012 and 2013].

For the first time outside of GR, for pure Maxwell equations:

We find an electromagnetic analog of gravitational wave memory.
[L. Bieri, D. Garfinkle 2013]

⇒ charged test masses observe a residual kick.

Other theories: In recent years, A. Strominger relates memory effect,
soft theorem and asymptotic symmetry to each other. Many papers by

many authors.

Recent works on memory include Wald, Tolish, Favata, Flanagan,
Nichols, Strominger, Winicour, Loutrel, Yunes, Hawking, Perry,
Zhiboedov, Pasterski and more.



Ordinary and Null

• Ordinary Memory: Sourced by 4P , that is the change in the radial
component of the electric part of the Weyl tensor.

• Null Memory: Sourced by F :

F =
1

8

∫ +∞

−∞

(
| Ξ |2 +C · T ∗

)
du

where Ξ denotes the asymptotic shear introduced before, C is a positive
constant, T ∗ the limit of the outgoing null component of the
stress-energy tensor (which exists and is positive for many physical
spacetimes), and F

4π is the total energy radiated to infinity in a given
direction per unit solid angle.



Concentrating on the Null Memory

Null Memory

⇒ Christodoulou Memory: F contains only part including the shear Ξ.
(D. Christodoulou)

⇒ Positive contribution from T ∗

for electromagnetic fields (Einstein-Maxwell equations) (L. Bieri, P.
Chen, S.-T. Yau),

for neutrino radiation (Einstein-null-fluid) (L. Bieri, D. Garfinkle)

for a “fairly general” stress-energy tensor with decay r−2 in the
outgoing null direction (L. Bieri, D. Garfinkle).

A paper by P. Lasky, E. Thrane, Y. Levin, J. Blackman and Y. Chen
suggests a method for detecting gravitational wave memory with aLIGO
by stacking events.



Gravitational Wave Experiment

For a situation where the geodesics are not too far away from each other,

⇒ one can replace the geodesic equation for γ1 and γ2 by the Jacobi
equation (geodesic deviation from γ0).

d2xk

dt2
= − RkT lT xl (4)

with

RkT lT = R (Ek, T, El, T )

where k, l = 1, 2, 3.

Information about the curvature and null structures required!

⇒ Analyze the spacetimes!



From Mathematical Theory to Physics and Observation
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Figure 2. Permanent displacement of test masses caused by Christodoulou memory effect. Test
masses m1 and m2 are displaced permanently after the passage of a gravitational wave train.
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Memory - Permanent Displacement

Asymptotically Flat Spacetimes

The permanent displacement of test masses is related to the difference
(Σ+ − Σ−) in the asymptotic shears, which themselves depend on the
radiated energy in a nonlinear way.

4x = − (
d0
r

) (Σ+ − Σ−) . (5)

There are the following contributions to the permanent displacement 4x:

The ordinary memory is sourced by 4P , that is the change in the radial
component of the electric part of the Weyl tensor. The null memory is
sourced by F , the energy radiated to infinity (including shear and
component of energy-momentum tensor).



Electromagnetic (EM) Memory

We find an electromagnetic analog of gravitational wave memory.
[L. Bieri, D. Garfinkle 2013]

⇒ charged test masses observe a residual kick.



Detection

Detectors of electromagnetic radiation ⇒ absorb energy from the wave.

• Flux of energy in the wave: goes as r−2.

• Sensitivity of the detector falls off like r−2.

Detectors of gravitational waves ⇒ sensitivity falls off like r−1.

• Gravitational wave detector works not by measuring power absorbed
from the wave but rather by following the motion induced in the detector
by the wave.

What permanent changes occur?

Gravitational: Permanent displacement.

Electromagnetic: Residual velocity (kick).



Electromagnetic (EM) Memory

Motion of a charge in the presence of an electromagnetic wave.

Charged test masses ⇒ Measure residual velocity (= kick).

For a charge q with mass m the equation of motion is

m
d2~x

dt2
= q ~E (6)

It follows that once the wave has passed the charge has received a kick
given by

∆~v =
q

m

∫ ∞
−∞

~Edt (7)



Ordinary Memory

Slow motion limit and far from the source:

~E =
1

r
P

[
d2~p

dt2

]
(8)

where ~p is the dipole moment of the source and P [] denotes “projected
orthogonal to the radial direction.” It then follows that the kick is given
by

∆~v =
q

mr
P

[
d

dt
~p(t =∞)− d

dt
~p(t = −∞)

]
(9)

Consider only systems which at large positive and negative times consist
of widely separated charges each moving at constant velocity. Then it is

d

dt
~p =

∑
k

qk~vk (10)

where the sum is over all objects, where the kth object has charge qk and
velocity ~vk. ⇒ Then the kick is given by

∆~v =
q

mr
P

[∑
k

qk~vk(t =∞)−
∑
k

qk~vk(t = −∞)

]
(11)



Null Memory

General case ⇒ kick still given by equation (7) from before:

∆~v =
q

m

∫ ∞
−∞

~Edt (12)

But: cannot use far field slow motion expression (eqn. (8)) or the electric
field.

⇒ Instead: analyze the general behavior of the electromagnetic field far
from the source.

Recall: electric and magnetic fields Ea and Ba satisfy Maxwell’s
equations:

∂aE
a = 4πρ (13)

∂aB
a = 0 (14)

∂tBa + εabc∂
bEc = 0 (15)

∂tEa − εabc∂bBc = −4πja (16)

where ρ is the charge density and ja is the current density.



Null Memory Continued

Maxwell’s equations in spherical coordinates.

Spherical coordinate indices: write r for radial direction and capital latin
letters for two-sphere direction.

∂rEr + 2r−1Er + r−2DAE
A = 4πρ (17)

∂rBr + 2r−1Br + r−2DAB
A = 0 (18)

∂tBr + r−2εABDAEB = 0 (19)

∂tEr − r−2εABDABB = −4πjr (20)

∂tBA + εA
B(DBEr − ∂rEB) = 0 (21)

∂tEA − εAB(DBBr − ∂rBB) = −4πjA (22)

Here DA and εAB are respectively the derivative operator and volume
element of the unit two-sphere, and all indicies are raised and lowered
with the unit two-sphere metric.



Null Memory Continued

Expand all quantities in inverse powers of r with expansion coefficients
that are functions of retarded time u = t− r and the angular coordinates.

For an electromagnetic field that is smooth at null infinity it follows that

EA = XA + . . . (23)

BA = YA + . . . (24)

Er = Wr−2 + . . . (25)

Br = Zr−2 + . . . (26)

ρ = jr = r−2L+ . . . (27)

where . . . means “terms higher order in r−1” and we also assume that at
large r the angular components of ja are negligible compared to the
radial component.



Null Memory Continued

Consider a field that is both charged and massless. This is the analog for
electromagnetism of fields whose stress-energy gets out to null infinity.

Closer look at equation (27):

ρ = jr = r−2L+ . . .

Introduce the current density four-vector Jµ given by J t = ρ and
Ja = ja. We also introduce the advanced time v = t+ r. It then follows
that Ju = − 1

2 (jr + ρ) and Jv = 1
2 (jr − ρ). Thus the behavior given in

(27) is equivalent to

Ju = −r−2L+ . . . (28)

Jv = O(r−3) (29)

JA = O(r−3) (30)



Null Memory Continued

Define the quantity SA by

SA =

∫ ∞
−∞

XAdu (31)

Then it follows that SA satisfies the equations

DAS
A = (W (∞)−W (−∞)) + 4πF (32)

εABDASB = Z(−∞)− Z(∞) (33)

where the quantity F is defined by

F =

∫ ∞
−∞

Ldu (34)

⇒ It follows that the kick points in the direction of SA and has a
magnitude of

∆v =
q

mr
|SA| (35)

EM Memory consists of ordinary kick and null kick .



EM Memory : Analyzed

EM Memory consists of ordinary kick and null kick .

∆v =
q

mr
|SA| (36)

ordinary kick due to difference between the early and late time
values of the radial component of the electric field Er

null kick due to charge radiated to infinity, that is F giving the
amount of charge radiated to infinity per unit solid angle.



Fast Charged Particle Mimics Null Memory

Measure EM Memory

Ordinary and null memory are distinct just as timelike particles differ
from null particles.

Just as a timelike particle with high velocity mimics a null particle
⇒ So the ordinary memory can mimic the null memory.

In an experiment: A very fast charged (timelike) particle
⇒ ordinary memory mimics null memory.

This is in principle measurable as residual velocities (i.e. kicks) of
charged test masses of a detector.



Cosmology: de Sitter, FLRW and ΛCDM

Observations of 1998 of Distant Supernovae

⇒ Accelerating Expansion of the Universe

Most popular cosmological theories:

• ΛCDM (with cold (i.e. non-relativistic) dark matter)

• Friedmann-Lemâıtre-Robertson-Walker (FLRW) (with a perfect fluid)

• de Sitter (dS) (modeling early inflation period of the Universe)

Positive cosmological constant.



de Sitter Spacetime and FLRW

• (L. Bieri, D. Garinkle, S.-T. Yau)

We find in de Sitter spacetime, that there is a factor of (1 + rH0)
multiplying F , the energy per unit solid angle radiated to infinity.

• For FLRW (A. Tolish, R. Wald):

For sources at the same luminosity distance, the memory effect in a
spatially flat FLRW spacetime is enhanced over the Minkowski case by a
factor of (1 + z).

Thus, the in de Sitter and FLRW spacetimes

⇒ null memory is enhanced by redshift factor.



FLRW: Friedmann - Lemâıtre - Robertson - Walker

The FLRW metric reads

ds2 = −dt2 + a2(t)
(
dr2 + r2(dθ2 + sin2 θdφ2)

)

Universe started as a small perturbation from FLRW.

⇒ by now: these perturbations have grown

⇒ waves propagate through highly inhomogeneous medium.

Consider gravitational waves in ΛCDM cosmology.



ΛCDM

ΛCDM

Our inhomogeneous spacetime

⇒ two zones: “wave zone” and “cosmological zone”.

(L. Bieri, D. Garfinkle, N. Yunes) For gravitational wave memory we find
that in the wave zone the memory is “similar” to the one with Minkowski
as a background, whereas in the cosmological zone the memory is given
by the memory in the wave zone multiplied by a factor including the
redshift and a magnification factor due to lensing.



Use the approximation that the wavelength of the waves is short
compared to all other scales in the problem.

Consider a background solution of the Einstein field equations with dust
and a cosmological constant: metric ḡab(x

µ), dust density ρ̄(xµ) and
four-velocity ūa(xµ) satisfying

R̄ab − 1
2 R̄ḡab + Λḡab − 8πρ̄ ūaūb = 0 . (37)

This background represents the cosmology of our evolving universe,
which we take to be FLRW on large scales, though with (possibly large)
density contrasts on small scales.

Next, add perturbations.



Introduce: one-parameter family of tensor fields
ĝab(x

µ, ξ), ρ̂(xµ, ξ), ûa(xµ, ξ), and a scalar field φ(xµ).

These are high-frequency deformations of the background uniformly
bounded in ξ.

Only restriction ⇒ length scale of inhomogeneities large compared to the
much smaller wavelength of the gravitational waves.

The full spacetime and matter content of the universe is then given by
the one-parameter family of tensor fields (gab, ρ, ua):

gab = ḡab(x
µ) + ω−2ĝab(x

µ, ωφ(xµ)) . (38)

ρ = ρ̄(xµ) + ω−1ρ̂(xµ, ωφ(xµ)) , (39)

ua = ūa(xµ) + ω−1ûa(xµ, ωφ(xµ)) , (40)

where ω is the frequency of the perturbations. The fields (gab, ρ, ua)
represent our universe in the sense that they satisfy the Einstein-fluid
equations to the appropriate order:

Rab − 1
2Rgab + Λgab − 8πρ uaub = O(ω−2) , (41)



Equation (41) describes the waves only in the region away from their
sources.

Parameter ω plays a dual role:

⇒ the frequency of the perturbation

⇒ and as an inverse amplitude.

The surfaces φ = const are wavefronts, since in the large ω limit the
waves vary rapidly in the direction perpendicular to them.



Remarks

Different from usual perturbative approach in GR, where in the
latter one assumes that there is a one-parameter family of metric
tensor fields, where each member of the family is an exact solution
of the field equations, but one only calculates that family to first
order in the parameter.

Instead in the weak progressive wave approach, the one-parameter
family of metric tensor fields is not expanded only to first order in
the parameter, but rather the field equations themselves, (Eq. (41))
are only satisfied to a given order in ω−1.

Our approach yields results that are gauge invariant.



Solutions to O(ω−1)

⇒ Gravitational perturbations (which travel at the speed of light) and
fluid perturbations (which travel at the speed of sound, in this case zero
because the fluid is dust) cannot have the same wavevector. Thus a
perturbation with a single wavevector must be pure gravity or pure fluid.

⇒ A perturbation with a single wavevector must be pure gravity or pure
fluid.



Let us now consider a non-trivial gravitational perturbation.

Let ka = ∇aφ. Prime denotes derivative w.r.t. ξ and ∇̄a takes
derivatives w.r.t. xµ.

Since the fluid perturbation vanishes at lowest order, it follows that

R
(1)
ab = 0. That is, even to O(ω−1) the field equations reduce to that of

vacuum. From R
(1)
ab = 0 and P ′a = 0 we obtain

−kb∇̄bĝ′ac − 1
2 (∇̄bkb)ĝ′ac + k(aLc) = 0 . (42)

La = ∇̄bĝ′ab − 1
2∇̄aĝ

′ is pure gauge. ⇒ Up to terms that are pure gauge,
the fall-off of the gravitational wave amplitude is determined by the
properties of the divergence of the null geodesic vector field ka. This
result can be stated in a manifestly gauge invariant way as follows.
Taking the derivative with respect to ξ of Eq. (42) we derive

ke∇̄eC(0)
abcd = − 1

2 (∇̄eke)C(0)
abcd . (43)



Implications in Homogeneous Background Spacetimes

The background spacetimes we consider are FLRW on large scales, but
on small scales the null geodesics can encounter curvature that can lead
to modifications in wave propagation.

Since light rays are described by null geodesics, the effect of lensing on
the brightness of a light wave is given by an equation of the same form as
Eq. (43). We show that the additional effect of inhomogeneities is
precisely to multiply the Weyl tensor by a magnification factor due to
gravitational lensing.

Consider a scalar A that satisfies the equation

ke∇̄eA = −1

2
A∇̄eke . (44)

We can then use this equation to rewrite Eq. (43) as

ke∇̄eC(0)
abcd −A

−1C
(0)
abcdk

e∇̄eA = 0 . (45)



Now: Specialize to an inhomogeneous FLRW spacetime background,
described by

ds2 = − (1 + 2Φ) a2(τ)dτ2 + a2(τ) (1− 2Ψ) δijdx
idxj , (46)

where δij is the Kronecker delta and (Φ,Ψ) are matter inhomogeneities
that in principle depend on conformal time τ (related to the time
coordinate t via dt = a(τ)dτ) and the Cartesian coordinates xi. Such a
perturbed FLRW spacetime suggests similar perturbative decompositions
of other quantities, such as the scalar function A = A0 (1 + ζ), where
A0 and ζ are independent and linearly-dependent on the matter
inhomogeneities respectively. It is A0 = 1/(ar).



The part of A that is linearly proportional to the matter inhomogeneities
can be obtained by solving Eq. (44) linearized in (Φ,Ψ). This equation,
in turn, depends on the solution to the null-geodesic equation in the
perturbed spacetime of Eq. (46).
P. Laguna, S.L. Larson, D. Spergel, N. Yunes studied such
inhomogeneities. Combining with their findings we compute

ζ = Ψ−Ψe

+
1

2

∫ λ

0

dλ′

(λ′)
2

∫ λ′

0

dλ′′ DAD
A(Φ + Ψ) . (47)

where λ is the affine parameter of null geodesics in the non-expanding
but inhomogeneous spacetime (Eq. (46) with a(τ) set to unity), Ψe is the
value of this Ψ at emission, and DAD

A is the Laplacian on the unit two
sphere. The first term in the above equation corresponds to the standard
Sachs-Wolfe effect, while the second is a magnification due to lensing.



With A calculated, we then find that Eq. (43) in the spacetime of
Eq. (46) simplifies to

kf ∇̄f
[
C

(0)
bcdear (1− ζ)

]
= 0 , (48)

where once more we have expanded in small matter inhomogeneities.

Next, we shall show that the ζ term magnifies the signal, thus magnifying
the memory effect.



Cosmological Memory

The wave zone is defined through the asymptotic relation H−10 � r � λ,
while the cosmological zone is defined through r & H−10 , where r is the
distance from the gravitational wave emitting source to a field point, λ is
the gravitational wave wavelength and H0 is the Hubble parameter today.

Now, a gravitational wave is emitted at r0 = 0,

⇒ detected first at r1 in the wave zone

⇒ and then detected again at r2 in the cosmological zone.



Recall: For two nearby geodesics with four-velocity ua and separation sa

acted on by a gravitational wave with Weyl tensor Cabcd, the geodesic
deviation equation requires that

s̈a = −Cabcdubscud (49)

where an overdot denotes derivative with respect to the proper time of
the geodesics.

For simplicity we assume an initial displacement orthogonal to the
direction of propagation of the wave, and we consider only the memory
due to energy radiated to infinity. Capital letters denote indices in this
two-sphere of orthogonal directions.



Measurements in the wave zone can be related to measurements in the
cosmological zone through the definition of the luminosity distance.

In Minkowski spacetime, the luminosity distance is the same as the usual
r coordinate.

The luminosity distance is given by

dL = ra(1 + z),

where z is the redshift and a is the scale factor at the location of the
measurement.



Equation (49) implies that after the wave has passed there will be a
residual change in the separation ∆sa.

Let the original separation s be in the B direction. Then the change in
separation ∆s in the A direction is given by

∆s = − s

dL
mA

B (50)

where the memory tensor mA
B is given by

mA
B =

∫ ∞
−∞

dt̃

∫ t̃

−∞
dt (dLCabcdx

aubycud) . (51)

Here xa and ya are respectively unit vectors in the A and B directions.



Redshift and Gravitational Lensing

We obtain

for the memory in the cosmological zone

m
(2)
AB = (1 + z2) (1 + ζ2)m

(1)
AB (52)

where ζ2 induces a magnification or a demagnification due to lensing

(analogous to focusing and de-focusing) of the signal, m
(1)
AB denotes the

memory tensor in the wave zone, z2 is the redshift at distance r2 in the
cosmological zone.



Further Questions

• Various systems coupled to Einstein equations.

⇒ How do they change the patterns of gravitational waves and memory?

• Different geometric-analytic structures.

• Analogs in other physical theories.

· · · and many more.

Thank you!


