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1 Introduction

Because asymptotically flat solutions to Einstein’s field equations
arises from data on non-compact initial hypersurfaces any work on
such solutions depends on assumptions about the asymptotic
behaviour of the data and the resulting properties of the solutions.

A lot of work has been done on this topic. To get a complete
picture, however, and to understand which choices may be too
restrictive or redundant some questions still need to be answered.

In the following I shall give some overview and point out some
questions. I shall only be concerned with the asymptotic structure
at space-like and null infinity and ignore the evolution of black
holes and the behaviour of solutions near time-like infinity.

For authors and technicalities, abundant in existence proofs but
ignored here, I refer to the references given at the end of the talk.
But I need to recall some ideas most of you may be familiar with.



2 Basic idea

Trautman-Bondi-Sachs-Newman-Penrose consider far fields of
isolated systems.

− They introduce the idea of future null infinity J +
∗ :

∃ caustic-free family of outgoing null hypersurfaces {u = const.}
ruled by future complete null geodesics with parameter r so that
r →∞ defines J +

∗ ∼ R× S2 (Bondi coordinates).

− They combine this with a notion of asymptotic flatness:

Bondi-Sachs: In the given coordinates the solutions approximate
the Minkowski metric asymptotically.

Newman-Penrose: The conformal Weyl tensor Cµ νλρ satisfies a
decay condition: In suitably adapted spinor frames the essential
components of the Weyl spinor show Sachs peeling behaviour:

Ψk =
Ψ0

k

r5−k + o( 1
r5−k ), k = 0, 1, . . . 4, as r →∞,

with functions Ψ0
k which are r -independent and parametrized, as

is J +
∗ , by the set of null generators of the congruence.



3 Underlying conformal geometry

Penrose developed the more geometrical concept of asymptotically
simple space-times.

It assumes that the large scale conformal structure of the solution
(M̂, ĝ) admits a (‘sufficiently’) smooth conformal extension

M̂ → M = M̂ ∪ J , ĝµν → gµν = Ω2 ĝµν

where M is smooth with boundary J , gµν , Ω are smooth on M,

Ω > 0 on M̂, Ω = 0, dΩ 6= 0 on J , J = J − ∪ J +,

with J ∓ ∼ R× S2 representing the past/future end points of null
geodesics, i.e. past/future null infinity.

If (M̂, ĝ) is vacuum near J ∓, the case considered in the following,
the sets J ∓ are g -null hypersurfaces.
If (M, g) is sufficiently smooth its conformal Weyl tensor satisfies
the Sachs peeling property.



4 The model . . .

conformally compactified Minkowski space

i± : Ω = 0, dΩ = 0,HessgΩ = −2 g future/past time-like infinity,
i0 : Ω = 0, dΩ = 0,HessgΩ = 2 g space-like infinity,



5 . . . and possible proposed generalizations

collapse generated purely by incoming gravitational radiation i.e.
the radiation field Ψ0

4 on J − (in J −-adapted frame)

radiation from − inspiral − merger − ring down − of black holes,
registered on J + by the radiation field Ψ0

4 (in J +-adapted frame).



6 Different sorts of existence results.

While the concept of asymptotic simplicity does not depend on
specific coordinates, it is conveniently and most often analysed in
terms of Bondi coordinates. The sets {u = u∗ = const}∩J + ∼ S2

are then space-like and J + represents the future endpoints of the
null geodesics ruling the null hypersurfaces {u = u∗ = const}.

In the first 20 years the analysis of the new approach focussed on
geometrical properties and physical concepts and was essentially
based on formal asymptotic expansion type analyses in terms of
r−k with k ∈ Z. Polyhomogeneous expansions in terms of r−k log j r
with k , j ∈ Z, were also proposed but seriously pursued only later.

The existence results discussed in the following deal with solutions

− obtained by using the equations in terms of the conformal fields
g and Ω, giving solutions with smooth conformal extensions,

− analysed in terms of the physical metric ĝ , allowing for more
general data, giving weaker smoothness at null infinity.



7 Characteristic initial value problems I

Consider the following data:

− The radiation field Ψ0
4 on future null infinity J +,

− the null datum Ψ0 on a given outgoing null hypersurface N ,
satisfying suitable fall-off conditions at Σ = N ∩ J + ∼ S2,

− certain pieces on Σ.

If these data are real analytic there exists a (unique) real analytic,
‘asymptotically simple’ solution in some neighbourhood of J +.

If these data are C∞ there exists a (unique) ‘asymptotically simple’
C∞ solution on some neighbourhood of Σ in the past of N ∪ J +.

To say more, further assumptions are needed. If extended into the
interior, the hypersurface N , smooth near Σ, develops in general
complicated caustics and selfintersections unless the datum Ψ0 is
given such N can be identified with the part C+

p \ {p} of a cone
C+
p generated by the future directed null geodesics emanating from

a regular point p in the solution.



8 Characteristic initial value problems II

Assume Ψ0 is C∞ on C+
p \ {p} and satisfies (the somewhat subtle)

regularity conditions at p.

Then there exists a unique maximal globally hyperbolic smooth
solution in the future of C+

p which induces the given data.

If the data satisfy in addition suitable fall-off conditions near Σ
(excluding, in particular, caustics in the future of p), the solution
admits a piece J ′+ of a smooth conformal boundary near Σ.

In this case the radiation field Ψ0
4 on J ′+ is determined by the

solution, thus by the data on C+
p , and cannot be prescribed as

independent data.

An extreme situation arises if we consider asymptotically simple
solutions that admit conformal extensions with regular points i−

and we let p → i− so that J − ∪ i− can be identified with C+
i− .

The data to be considered on J − ∪ {i−} is then the radiation
field, given in a suitably J −-adapted frame by Ψ0

4.



9 Asymptotic characteristic initial value problem

Assume that Ψ0
4 is smooth on J − in the usual sense and satisfies

near i− appropriate regularity conditions.

Then there exists a unique, smooth, maximal globally hyperbolic,
past asymptotically simple solution in the future of J − ∪ {i−}
which induces the given (incoming) radiation field on this set.

If the radiation field vanishes near i− the solution will be flat near
i−, regularity at i− poses not problem, and the situation is covered
in fact by the second of the results above.

The maximal globally hyperbolic developments of these solutions
are under control so far only under additional assumptions.

There does exist a class of radiation fields so that J − is complete
and the corresponding solutions admit smooth conformal
extensions with smooth, complete J + and regular point i+.

The way these solutions are constructed will be discussed later.

A general characterization of this class of data is not known yet.



10 Hyperboloidal initial value problem I

To avoid caustics, we consider hyperboloidal hypersurfaces,
i.e. space-like hypersurfaces S which are thought to extend as
space-like hypersurfaces up to J + with space-like boundary
Σ = ∂S = S ∩ J + ∼ S2.

Conformal data induced by an asymptotically simple vacuum
solution on a hyperboloidal hypersurface that extends smoothly
to Σ are referred to as smooth hyperboloidal initial data.

The corresponding physical vacuum data ĥab and χ̂ab show a
specific fall-off behaviour near Σ. If ω ≥ 0 is in C∞(S) with
ω = 0, dω 6= 0 on Σ then, in particular,

− mean extrinsic curvature: limω→0 ĥ
ab χ̂ab 6= 0 on Σ,

− hab = Ω2ĥab and χab = Ω (χ̂ab − 1
3 ĥ

cd χ̂cd χ̂ab) extend
smoothly to Σ with hab Riemannian and Ω ∼ ω as ω → 0.



11 Hyperboloidal initial value problem II

In general, free data ĥab and χ̂ab satisfying the conditions above
yield constrained conformal data that are polyhomogeneous i.e.
admit non-trivial asymptotic expansions in terms of ωk logj ω at Σ.

If the free data are only polyhomogeneous at Σ they determine
constrained conformal data that are again polyhomogeneous at Σ.

There exists a large class of smooth hyperboloidal initial data.
Obtained from free data satisfying additional conditions at Σ.

− Conservation of asymptotic smoothness: Smooth hyperboloidal
vacuum data develop into vacuum solutions that admit in their
future a smooth piece of J ′+ ruled by g -null geodesics with past
endpoints on Σ. Consequence of Einstein’s field equations.

− Strong hyperboloidal stability: Data close to Minkowskian
hyperboloidal data develop into solutions that admit smooth
conformal extensions with regular i+ so that J ′+ ∪ {i+} = C−i+ .

− Choice ?: Evolution of polyhomogeneous data near null infinity.



12 Standard Cauchy problem: Choice of data I

Consider asymptotically flat standard Cauchy data ĥab and χ̂ab on
R3. Instead of weighted Sobolev norms list only fall-off properties.

L. Bieri (2009): weakest fall-off

ĥαβ = δαβ + o3(|x |−1/2) χ̂αβ = o2(|x |−3/2).

D. Christodoulou, S. Klainerman (1993):

ĥαβ =
(
1 + 2m |x |−1

)
δαβ + o4(|x |−3/2) χ̂αβ = o3(|x |−5/2).

Hintz-Vasy (2017): 0 < ε << 1

ĥαβ − (1− ξ) ĥSαβ = o(|x |−(1+ε)), χ̂αβ = o(|x |−(2+ε)),

ĥSαβ 3-metric induced by standard Schwarzschild metric

on {t = 0, r ≥ R}, and ξ ∈ C∞0 (R3), ξ = 1 in BR , R > 0.

These two authors consider in particular data that admit polyhomo-
geneous asymptotic expansion in terms of integer, fractional or
even complex powers of |x |−1 and logarithmic terms as |x | → ∞.



13 Standard Cauchy problem: Choice of data II

Dain-F. (2001): Study data which are clean at space-like infinity,
i.e. admit expansions in terms of integer powers of |x |−1

ĥαβ =
(
1 + 2m |x |−1

)
δαβ + O∞(|x |−2) χ̂αβ = O∞(|x |−2),

start from free data that admit |x |−1-expansion, conformal
3-structure that admits smooth conformal compactification.

Free χ̂αβ-data that fall off like O(|x |−(2+ε)) give rise to clean
solutions to the constraints. The free χ̂αβ-data which determine
the linear ADM-momentum, namely those that fall off like
O(|x |−2) but not faster, give rise to logarithmic terms.

Compare with Bieri-, Christodoulou-Klainerman-, Hintz-Vasy-data.

Only example for which the coefficients entering polyhomogeneity
expansion could admit some physical interpretation ?

What else could be required besides O(|x |−k) fall-off conditions ?
The type of data above seem to exhaust the possibilities.



14 Cauchy problem: Choice of data III

Corvino (2000), Chrusciel-Delay (2003), Corvino-Schoen (2006):

Construct deformations of given asymptotically flat data into
data that are
− exactly static/stationary near space-like infinity, or
− asymptotically static/stationary at space-like infinity,
while keeping the given data unchanged on a prescribed
compact set in the interior.

These are again data which are clean at space-like infinity. Near
space-like infinity they are more special than the data considered
above but they are still very general. How general they are will be
seen later.



15 Cauchy problem: Results on evolution I

For data that are small, smooth, with fall-off conditions considered
by the authors above, the global non-linear stability of Minkowski
space and the following asymptotic behaviour has been established:

Bieri: As r →∞ along outgoing null geodesics in adapted frame

Ψk = O(rk−5), k = 4, 3, Ψk = o(r−5/2), k = 2, 1, 0.

Christodoulou-Klainerman:

Ψk = O(rk−5), k = 4, 3, 2, Ψk = O(r−7/2), k = 1, 0.

No Sachs peeling or smooth conformal extensions of solutions
for which these estimates are sharp. Restricted information on
null infinity

Hintz-Vasy: For data that admit polyhomogeneous asymptotic
expansion at space-like the solutions admit polyhomogeneous
asymptotic expansion at space-like, null and time-like infinity.



16 Cauchy problem: Results on evolution II

Chruściel-Delay (2001), Corvino (2007):

Construct vacuum data with arbitrarily small mass m > 0 on R3

which are exactly Schwarzschild near space-like infinity.

As m→ 0 the developments in time of these data contain smooth
hyperboloidal hypersurfaces with smooth induced data arbitrarily
close to Minkowskian hyperboloidal data.

Combined with the strong hyperboloidal stability result above this
implies the existence of a large class of vacuum solutions with
complete, smooth null infinity J ± and regular points i± at past
and future time-like infinity.

Can be expected to generalize to data which satisfy a similar
smallness condition but which are only asymptotically static/
stationary at space-like infinity.



17 Space-like infinity in detail

Developments of data which are clean at space-like infinity admit
near space-like infinity smooth, finite, conformal representations in
which space-like infinity is given by a cylinder I ∼]− 1, 1[×S2 that
touches the Cauchy hypersurface in a set I 0 ∼ S2 and null infinity
J ± in the critical sets I± ∼ S2. No smallness conditions needed.

The setting and the gauge, including the conformal factor the
coordinates and a g -orthonormal frame, are determined solely
by the field equations, the conformal structure of the solutions,
and by some gauge conditions on the initial slice. The location
of the prospective hypersurfaces J ± is known explicitly in the
given gauge.

The reduced conformal field equations are in this setting hyperbolic
on M̂ ∪ I and, if the frame admits a continuous extension, also at
null infinity J ±.



18 Cylinder at space-like infinity

Suitably conformally rescaled data extend smoothly to I 0 ∼ S2.

I = cylinder at space-like infinity generated from I 0 by conformally
extended Einstein equations, I touches J ± at critical sets I± ∼ S2

The reduced conformal Einstein equations are hyperbolic on
M̃ ∪ I ∪ J ±, the hyperbolicity is lost at the critical sets I±.



19 The critical sets

For their unknown u the reduced equations induce interior
equations on I . These determine in terms of a coordinate
ρ ≥ 0, with ρ = 0 on I , a formal expansion

u ∼
∑∞

k=0
1
k!ck ρ

k with coefficients ck = (∂kρu)I on I .

Even if the initial data are smooth near I 0, the solutions on I will
in general not extend smoothly to I± (and thus to J ±). While the
(∂kρu)I are smooth on I , they are polyhomogeneous in terms of a

coordinate τ with τ = ±1 at I±: (∂kρu)I ∼ (1 ∓ τ)j logl(1 ∓ τ).

Not a problem of the setting but a consequence of the evolution
equations and the structure of the data.

The logarithmic terms depend on the choice of the Cauchy data.
They vanish e.g. if the data are asymptotically static/stationary.

If the setting is linearized at Minkowski space the logarithmic
terms travel along J ±. The situation cannot be expected to
improve but does not get worse in the non-linear case.



20 Polyhomogeneity of physical relevance ?

We can distinguish three sources of polyhomogeneous behaviour:

− Badly chosen coordinates may entail polyhomogeneities at J ±
even for vacuum solutions with smooth conformal extensions.

− Certain data give rise to polyhomogeneities already on the initial
slice at space-like infinity and then most likely along null infinity.

− For another class of data polyhomogeneities are generated at the
critical sets and propagate along null infinity.

Polyhomogeneities ↔ physical/geometrical concepts ?

Paetz (2018): If the radiation field on J ± vanishes at all orders at
I± there are no logarithmic terms at the critical sets. With an
additional condition on the mass aspects this condition is also
necessary for the smoothness at the critical sets.

Going towards some interpretation of some polyhomogeneities and
suggests conditions for solutions determined from data on J − ∪ i−

to extend near the cylinder at space-like infinity smoothly to J +.



21 Density results for vacuum data and solutions ?

Allen-Stavrov Allen (2017): Polyhomogeneous, hyperboloidal data
of constant mean curvature can be approximated in certain Hölder
norms by smooth hyperboloidal data of constant mean curvature.

Corvino-Schoen (2006): Asymptotically flat initial data on a
3-manifold S can be approximated by data on S which agree with
the original data inside a given compact domain, and agree with
some space-like Schwarzschild, Kerr or . . . slice outside some ball.

Approximations controlled in terms of weighted Sobolev norms
consistent with Christodoulou-Klainerman data. Generalizations ?

Raises the most interesting question:

Are the asymptotically simple vacuum solutions in some sense
dense in a set of asymptotically flat vacuum solutions considered
in the non-linear stability results above ?

A definite answer should provide essential clarification of situation.
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