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Describe a formalism for
the scattering of massless particles,
and discuss its connection to

various soft theorems.



Parke—Taylor formula

Scattering of n gluons
My =tr(T1Ta--- Ty)M,[12. .. n] + permutations.
In the maximally-helicity-violating sector (MHV, two “—" helicities)

| B (i j)*
M’l)iHV[]_z - n] = <12> <23> - <n1> ’

with ka#O'Zd =\, aS\a &, and <a b> = Gaﬁ/\ap{)\b’g. [Parke, Taylor, ‘86]

Soft limit k, — 0 (assuming n is neither i nor j)

(n—11)

M,1>4HV[12...”]:W

x MMEVI12. .. n—1] + subleading.



Parke—Taylor formula

| - (i)
M’11\1HV[]_2 - n] = <12> <23> R <n1> ’

with ks ,0" . = Aaadaa, and (ab) = €PN, o5
Iy oo k] ’ El 75

We can consistently assign for every particle

1 k1 k' + ik* ik2

and then

1

MHV nl :
Mn [12... ] (21_22)(22—23)"'(Zn_21)

z parametrizes the celestial sphere in four dimensions.



A slight detour ...

Here we would rather interpret this sphere as and auxiliary space, i.e.,

M = ZI Ne=z(x) = /dzé(z—z(k))/(z).

N

“path ?rﬁegral”
For MHV gluon partial amplitudes
1 ki + ik3
1(z) x ) za(k) = 2—-2.
(2) (21— 2)(z22—2z3) - (20 — 21) 2(K) kO + k3

Past 3/2 decades: twistor strings, ambi-twistor strings, etc.
[Nair, ‘88], [Witten, ‘03], [Mason, Skinner, ‘13], etC. [See Lionel’s talk.]

This exists for arbitrary tree-level scattering of massless particles.
[Cachazo, He, Yuan, '13]
In this talk we will directly work with this formalism.



The CHY formalism

For n-particle scattering, consider an n-punctured Riemann sphere, with
{z1,22,...,2zp} being the inhomogeneous coordinates of the punctures.
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The CHY formalism

For n-particle scattering, consider an n-punctured Riemann sphere, with

{z1,22,...,2zp} being the inhomogeneous coordinates of the punctures.
az +
{z1,...,zn} ~{d(z1), ..., P(zn)}, » €SL(2,C):z— e +§.

CHY formalism

Anthoeh) = [ ZTTL06) iz} (k).

—_————
dpn

Scattering equations

Va.

Z

b=
b;éa




The CHY formalism

An({k, €}) = /dzna ({2}, {k, e}), fazzzka;kzb.
%,_/ &

Mn

e For any choices of labels {/,j, k} and {/’, /', k'}

w = (zi—z)(zj— z« )(zk — z;)d z;}d z;d 2,

- 1
IL.= (zir = 2p) 2y — 210 )20 — 2i)

a#i’ j! k'
e Only /, depends on the theory under study.
e SL(2,C) redundancy imposes a constraint on /,

I, — 1, 1_[(72a + 5)4.
e=ll



How to ensure unitarity

(k) = (2, = (k)

- )

Factorization limit:



How to ensure unitarity
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Factorization limit:
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Compact formulas

Gluon amplitudes

IM[12...c] = C[12...n] Pf'W,,,

where

Cl12...n = ((z1 — 2)(z2 — 73) -+ (20 — 21)) ",
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Gluon amplitudes

IM[12...c] = C[12...n] Pf'W,,,

where
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Gluon amplitudes

IM[12...c] = C[12...n] Pf'W,,,
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Compact formulas

Gluon amplitudes

IM[12...c] = C[12...n] Pf'W,,,

where
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Compact formulas

Gluon amplitudes

IM[12...c] = C[12...n] Pf'W,,,

where
Cl12...n = ((z1 — 2)(z2 — 73) -+ (20 — 21)) ",

W, is 2n X 2n anti—symmetric
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Compact formulas

Gluon amplitudes

IM[12...c] = C[12...n] Pf'W,,,

where
Cl12...n=((z1 - 2)(z—2z)- (2, — 21)) ",
WV, is 2n X 2n anti-symmetric
12---n 12---n
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Compact formulas

Gluon amplitudes

IM[12...c] = C[12...n] Pf'W,,,

where
Cl12...n=((z1 - 2)(z—2z)- (2, — 21)) ",
WV, is 2n X 2n anti-symmetric
12---n 12---n

1 .
2 [ ks — 3 fete
r:' Z,—2, c;éa c a
3 K
- b
: Zy— Za—Zp O
n
b
/ (_1)87
PIW, = = PI(Vn),5.



Compact formulas

Graviton amplitudes

ISR = (Pf'V,,)? = det'W,,.
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Graviton amplitudes

ISR = (Pf'V,,)? = det'W,,.
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We can also utilize the first block of W, i.e., (An)ap =



Compact formulas

Graviton amplitudes

ISR = (Pf'W,)? = det'V,,.

Ka-kp
Z3—2Zp "

We can also utilize the first block of W, i.e., (An)ap =
This leads to formulas for a bunch of other effective theories, e.g.,

e U(N) Non-linear sigma model

INSSMI12  n] = C[12... n] (P'An)2.
e Born-Infeld
1B = (Pf'A,)? PV,
e A special Galileon scalar
IsGaI (Pf/ )

More: [Cachazo, He, Yuan, ‘14], [He, Zhang, ‘16], [Heydeman, Schwarz, Wen, ‘17], etc.



More about the scattering equations

For any kinematics {k}, these always yield (n — 3)! solutions in {z}.

Soft limit, k, — 0:

e For 1 < a < n, the equations reduce to those of n — 1 particles

”ika-kb -
+ =0.
b#aza—zb ;a/—zn

e For each solution of {z,...,z,_1} from above, the last equation
yields n — 3 solutions for z, (due to Y . _; ky = 0).

n—1

kn - k
§ il g
b1 Zn — Zp

e In all solutions z, is distinct from the other z,'s.

10



Single soft particle
1

|f|=e
Soft limit, k, — 0:

o=z / dz, .
M, = — Ha(s(fa) I, = /dun—l 7{ a In + subleading.
—

A |fn|=€

Applying residue theorem on z,

dz, |
M,,:/du,,_l f <t In-tsubleading.

double poles b=1 z,~z,

inl,

SO,

Convenient if a closed formula for all amplitudes in a theory is known.
11



Single soft particle

dz, .
An = /d,U/n—l f %knkb /n +(Sub|ead|ng).

b=1 Zn—2Zp

double poles
inl,

SO,

e In CHY, soft theorems are essentially consequences of
residue theorems.

e Before contour deformation, we have a drastically different
expansion of the soft limit, in terms of the n — 3 solutions of z,.

e We expect each term in the soft factor to arise from collision of
punctures z, — zp.

12



Weinberg soft theorems

e Parke—Taylor factor

(zn-1—21)
(anl - Zn)(zn - Zl)

C[12...n] = C[12...n-1].

13



Weinberg soft theorems

e Parke—Taylor factor
(zn-1— 1)
(zn—1 — zn)(zn — 1)
e Recall the recursion formula for Pfaffian
PEM = (—1) WM PEM;..
JF#i

In the nt™ row of W,, all entries scale with k, except for (Vp)n 2n.

C[12...n] = C[12...n-1].

n—1
kn - ki kn - kn—1 0 kn - €1 kn - €n—1 €n - kp
e , e ,
Zn — 21 Zn — Zn—-1 Zn — 21 Zn — Zn—-1 b1 Zn — 2Zp
—————
dominate

13



Weinberg soft theorems

e Parke—Taylor factor

B (zn-1— 21) .
Cl12...n = o= s s Cli2. 1)

e Recall the recursion formula for Pfaffian

PfM = Z 1)+ g, PfM;;.

JFi
In the n' row of W, all entries scale with k,, except for (V1)n.2n-
n—1 p K
“n " Rp .
Pf'V, = (Z H) Pf'(V,), 5 -subleading.
b=1"" = T/—/
n—1
(Wn)n,2n no dependence
on kp

13



Weinberg soft theorem

B (zn-1—21) .
Cl12....n = =T s 2. n-1)

n—1
.-k .
PV, — (Z 6") Pf'W,_; + subleading.

Zn — Z
b1 N b

Gluons:

MM[12.. n]—>/dun IYMI12. . n—1]x

dz, (Zn—l_zl) nzi €n - kb
St knks (2,1 —2p)(2n—21) Zn — 2p

b=1 z,—z, b=1

€n - ki €n - kn—1 YM
= = M 12...n-1]J.
(kn ki kn- kn_1> n-1l12... =]

14



Weinberg soft theorem

ol (zn-1—21)
C[12...n] = G —2)(z0—71)
1

C[12...n-1],

n— i k
PV, = ( N ) Pf'W,_1 + subleading.

Gravitons:

b=1
n—1
_ Z €n, Ky Ky MGR
kn . kb n—1
b=1

ii5)



Extention of theories from the soft limit

e By simple power counting using either Feynman diagrams or CHY,
soft limit of, e.g. NLSM, is suppressed

o~ ks €~ D, PP~k = [ dunCPEA ~ ki
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Extention of theories from the soft limit

e By simple power counting using either Feynman diagrams or CHY,
soft limit of, e.g. NLSM, is suppressed

o~ ks €~ D, PP~k = [ dunCPEA ~ ki

e Nevertheless, check the leading order

pra, = " nz_:z(—nbk” K B A

71— zn1 £ Zn — 2Zp Lb,n=1,4

16



Extention of theories from the soft limit

e By simple power counting using either Feynman diagrams or CHY,
soft limit of, e.g. NLSM, is suppressed

o~ ks €~ D, PP~k = [ dunCPEA ~ ki

e Nevertheless, check the leading order

n—2

— 1) k, - kp
Pf'A, = =D —1)6 225 pr(A,
21 — Zp1 bZ:Z( ) Zn — Zp ( )

1,b,n—1,4"

From similar computations, MNSM[1 .. n] becomes

n—2
> kn kb/dun_l C[1...n=1] C[tan—1](Pf(An1); ;573)*
b=2

16



Extention of theories from the soft limit

/du,,l C[1...n—1] C[1an—1](Pf(Ar-1); ,75)°-

extra particle
extra flavor
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Extention of theories from the soft limit

/du,,l C[1...n—1] C[1an—1](Pf(Ar-1); ,75)°-

extra particle
extra flavor

This is a special case to the more general formula

ARSMES ;5] = [ dy Clo] CI81 (PEAD) 2

[Cachazo, Cha, Mizera, ‘16]
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Extention of theories from the soft limit

/du,,l C[1...n—1] C[1an—1](Pf(Ar-1); ,75)°-

extra particle
extra flavor

This is a special case to the more general formula

ARSMES ;5] = [ dy Clo] CI81 (PEAD) 2

[Cachazo, Cha, Mizera, ‘16]

e Sector 1: the original U(N) NLSM
ANLSM®®? . 5] = ANLSM[] — /du,, Cla] (Pf'A,)%.
e Sector 2: bi-flavored ® w/ fopcfurprer®3 GPY e’

ANLSMO®® [ 5] — A%%[4: 6] = /du,, Cla] C[A], B € Sp.

17



Soft theorems at subleading orders

e A revival of studying soft theorems at subleading orders arises from
conjectured connections to the BMS symmetry. [Strominger, ‘13, ‘14]
In particular

MASR = (88 + s&) 1 sS@HYMER, + O(k2).

e Using CHY formulas, these can be investigated by working into
higher orders in k,; the role of the residue theorem remains the
same (f, only receives an overall scale).

E.g., [Schwab, Volovich, ‘14], [Afkhami-Jeddi, ‘14], [Zlotnikov, ‘14], etcC.

e Note that at higher orders we necessarily need to expand §(f;) as
well. In fact, the orbital part of S can almost be easily read off
by matching the ¢'(f,) terms.

18



Two soft particles

e When the single soft limit is suppressed, the limit of two
simultaneous soft particles usually becomes interesting.

NLSM DBI 2 Gal
MNESM g, MPBU k2 sSl  k3,
e Let us start with n+ 2 particles and control the double soft limit by

kn+1 =Tp, kn+2 =7q, T— 0.

e Clearly we have to integrate away z,41 and z,o in order to land
on an n-particle scattering. It is convenient to redefine

_ ¢ _ €
Zn+1—p_§7 Zn+2—p+§-

19



Two soft particles

e {f, =0} (a < n) at leading order reduce to the scattering
equations at lower points (independent of {p,¢}).

e Instead of directly using f,1+1 = fh42 = 0, we impose

fn—l—l + fn+2 = In+1 — Tn+2 = 0.

p contour solve &

20



Two soft particles
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equations at lower points (independent of {p,¢}).
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fn—l—l + fn+2 = In+1 — Tn+2 = 0.

p contour solve &

Correspondingly
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Two soft particles

e {f, =0} (a < n) at leading order reduce to the scattering
equations at lower points (independent of {p,¢}).

e Instead of directly using f,1+1 = fh42 = 0, we impose

fn—l—l + fn+2 = In+1 — Tn+2 = 0.

p contour solve &

Correspondingly

1 -2
Mo = %d /d n Ihio.
2 g Z s for1 + for2 Og(for1 — fag2) i

¢ solns

Here some new phenomenon occurs.

20



Two soft particles

e foy1 — frp2 = 0 is equivalent to

n

Z( kP kg >_27p‘q_0
p—&2—z, p+&/2—2z § '

b=1
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Two soft particles

e foy1 — frp2 = 0 is equivalent to

n

Z( kP kg >_27p‘q_0
p—&2—z, p+&/2—2z § '

b=1

e There are two types of £ solutions:
e Regular: £ ~ 70,

e Singular: ¢ = 7& + O(72). & is uniquely solved.
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Two soft particles

e foy1 — frp2 = 0 is equivalent to

Z":( ke-p  kp-q >_27p‘q_0
p—&2—z, p+&/2—2z § '

b=1

e There are two types of £ solutions:

e Regular: £ ~ 70,

e Singular: ¢ = 7& + O(72). & is uniquely solved.
e It turns out that for many theories of interests, singular solutions
dominates over regular ones.
Consequently

1 & :
Mo = /du,,fdp — L In42 + subleading.
S e TP

21



Examples of double soft theorems

,,,,L,;,,,2;,, qu

A= ...+ o Tra = PfA,= Pf'A,_» + O(72).
1
P

22



Examples of double soft theorems

Ao ' :
O .
Av=| 070 0T e = PPA, = PIPHA, L+ OF?).
L, = 1
P4 £P~q 0

For sGal, DBI, EMS (with m =1,0,—1)
Mns2 = (kns1 - kni2)"(S©® + SW + SBYM, + O(7>™H4),
where, e.g.,
s 1 " (ko - (kn+1 — kn+2))?

T4 P kp - (kn+1 + knt2)

[Cachazo, He, Yuan, '15]

22



Examples of double soft theorems

Ao ' :
- -1 - - - - _ __ o
An= |77 0 TZR3T| = PRA= T’g TPt A,y + O(72).
: szp'q 0 !

For sGal, DBI, EMS (with m =1,0,—1)
Mns2 = (kns1 - kni2)"(S©® + SW + SBYM, + O(7>™H4),
where, e.g.,
s 1 " (ko - (kn+1 — kn+2))?

_Z =1 kp - (kn+1 + kn+2) '

[Cachazo, He, Yuan, '15]

Such analysis in the CHY setup can also be extended to the study of

multiple soft behavior, e.g., [Chakrabarti et al, ‘17].
22



o We reviewed the CHY formalism introduced in recently years for
the scattering amplitudes of massless particles at tree level.

e At the core of this formalism is a punctured Riemann sphere,
whose configuration is in correspondence to the kinematics via
scattering equations.

e Upon this punctured sphere the “amplitude” (i.e., CHY integrand)
turn out to have compact closed expressions.

e In this context, various soft theorems naturally arise from the
residue theorems associated to the puncture variables for the soft
particles. The closed formulas then helps easily determine the soft
operators, both at the leading and subleading orders.

e With this method, new soft theorems were also discovered for the
double soft limit.

23



Thank you very much!
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