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Neutrino mass in particle physics

● Nature of the neutrino: Majorana or 
Dirac particle, i.e. is the neutrino it's 
own anti-particle ?

● How to explain the many orders of 
magnitude difference between neutrino 
mass limits and masses of the charged 
fermions of the standard model
→ sea-saw type I and type II 

mechanisms

● Possible connection to the generation 
of the observed matter - antimatter 
asymmetry in  the universe 
→ leptogenesis
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KATRIN

Mainz / Troitsk

ν - oscillations

dark energy

dark matter

baryons

stars / gas

Neutrino mass in cosmology

● Neutrinos are (after γ's) the second most 
abundant particle species in the universe
 

● As part of the hot dark matter, neutrinos have 
a significant influence on structure formation

● For large Σm
ν 
values fine grained 

structures are washed out by the 
free streaming neutrinos

Ʃ Ʃ

Ʃ Ʃ
ChungPei Ma 1996
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Current knowlegde and open questions

What we know (from ν oscillations):
 

● Neutrino flavour eigenstates differ 
from their mass eigenstates

● Neutrinos oscillate, hence they 
must have mass

● Mixing angles and Δm2 values 
known (with varying accuracies)

What we don't know :
 

● Normal or inverted hierachy ?
● Dirac or Majorana particle ?
● CP violating phases in mixing 

matrix ?
● No information about absolute 

mass scale ! (only upper limits)
● Existence of sterile neutrinos ?

normal
hierachy

inverted
hierachy

absolute
scale ?
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β-decay: absolute ν-mass
model independent, kinematics
status: m

ν
 < 2.3 eV

potential: m
ν
 ≈ 0.2 eV

e.g.: KATRIN, Project-8, ECHO
HOLMES, NuMECS

0νββ-decay: eff. Majorana mass
model-dependent (CP-phases)
status: mββ < 0.31 eV

potential: mββ ≈ 20-50 meV

e.g.: GERDA, CUORE, EXO, SNO+, Majorana,
         Nemo 3, COBRA, KamLAND-Zen

cosmology: ν hot dark matter Ω
ν

model dependent, analysis of CMB and 
structure formation data
status:   Σm

ν
 < 0.23 eV

  (Planck Collaboration, A&A 594 (2016) A13)

possible signal:  Σm
ν
 = 0.11 ± 0.03eV

      (Emami et al., arXiv:1711.05210)

 

neutrino mass
measurements

mν m
ββ

Σm
i

Search for neutrino mass
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(modified by final state distribution, recoil corrections, 
radiative corrections, ...)

T-decay
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Kinematic determination of m(ν
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Suitable Isotopes:
 

Tritium
● E

0    
= 18.6 keV, T

1/2
 = 12.3 a

● S(E) = 1 (super-allowed)

Rhenium
● E

0
 = 2.47 keV, T

1/2
 = 43.2 Gy

alternative approach:
 

Holmium (EC decay)
● Q

EC
 ≈ 2.5 keV, T

1/2
 = 4570 y
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(Main) experimental approaches

Detector requirements:
 

● large solid angle or 
source=detector approach

● high energy resolution
● low background
● low dead time / no pile up

effect of :
● background
● pile up
● fluctuations 

Tritium based experiments
 

● KATRIN: gaseous tritium source with MAC-E type integrating spectrometer 
determining kinetic energy spectrum of β-decay electrons

● Project 8: gaseous tritium source determining kinetic energy spectrum of β-decay 
electrons by measuring cyclotron radiation emitted in a magnetic field

Holmium based experiments
● ECHO: Calorimetric measurement of energy released in EC decay of 163Ho using 

Metallic Magnetic Calorimeters (MMC)
● HOLMES: Calorimetric measurement of energy released in EC decay of 163Ho 

using Transition Edge Sensors (TES), successor of MARE effort
● NuMECS: similar experimental approach as HOLMES
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KATRIN experiment at KIT

Pre-SpectrometerTritium source Transport section Spectrometer Detector

70 m
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● adiabatic transport → μ = E⊥/ B = const.
 

● B drops by 2·104 from solenoid to analyzing plane → E  ⊥ → EII    
 

● only electrons with EII > eU
0
 can pass the retardation potential 

 

● Energy resolution ΔE = E ,max, start⊥  · B
min

 / B
max

 < 1 eV

MAC-E filter concept

Magnetic Adiabatic Collimation with Electrostatic Filter

A. Picard et al., NIM B 63 (1992)
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Windowless Gaseous Tritium Source

● beam tube Ø = 9 cm , L = 10 m
● guiding field 3.6 T
● temperature T = 30 K ± 30 mK,
● T

2
 flow rate 5·1019 molecules/s

(40 g of T
2
 / day)

● T
2
 purity 95% ± 0.1 %

● T
2
 inlet pressure 10-3 mbar ± 0.1 %

● column density 5·1017 T
2
/cm2

● luminosity 1.7·1011 Bq

WGTS at Tritium Laboratory Karlsruhe
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Pumping sections

Differential Pumping Section (DPS2-F)
● magnetic guiding field B = 5.6 T
● differential pumping using 2000 l/s TMPs 

→ tritium reduction factor: 1·105

● ion monitoring by FTICR
● ion manipulation by electrodes

Cryogenic Pumping Section (CPS)
● magnetic guiding field B = 5.6 T
● cryosorption of T

2
 on Ar frost at ≈ 3 K

→ tritium reduction factor 1·10-7 

● within 60 days: accumulation of 1 Ci
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Main-Spectrometer

● 18.6 kV retardation voltage, σ < 60 meV
 

● 0.93 eV resolution
 

● pressure < 10-11 mbar
 

● Air coils for earth magnetic field compensation
 

● Double layer wire electrode for background
reduction and field shaping

σE = 50 meV
(single angular 

emittance)
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PINCH MAGNET

DETECTOR MAGNET

DETECTOR

SUPPORT STRUCTURE

VACUUM, CALIBRATION SYSTEM

ELECTRONICS

electro
ns →

Focal Plane Detector

Focal plane detection system
 
● segmented Si PIN diode:

90 mm Ø, 148 pixels, 50 nm dead layer
 

● energy resolution ≈ 1 keV
 

● pinch and detector magnets up to 6 T
 

● post acceleration up to 30kV
 

● active veto shield

pre-amplifier wheel

segmented Si-PIN wafer

detector magnets at KIT
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Beam line commissioning

Technical start of KATRIN: „1st light“, photo-electrons from rear 
wall & and ions 

Oct. 14, 2016

Testing complete 70m long beamline with electrons:
- alignment 
- magn. stearing of pencil beam

and with ions: 
- ion removal

no tritium yet
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Commissioning campaign with 83mKr

83mKr from 1 GBq 83Rb source

implanted
 83Rb/83mKr 

→ quasi- 
monoenergetic
electron lines 
between 7 keV 
and 32 keV

July 2017: calibration and commissioning campaign using
gaseous, condensed and implanted 83mKr sources

homogenouos 
detector 
illumination
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Commissioning campaign with 83mKr

implanted
 83Rb/83mKr 

July 2017: calibration and commissioning campaign using
gaseous, condensed and implanted 83mKr sources

condensed 83mKr source,
point-like, can be scanned 
over full flux tube

preliminary, small part of statistics only !

pixel selective 
detector 
illumination

L3-32 line
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1. Inelastic scattering of ß´s in the source (WGTS)
    - calibration measurements with e-gun necessary 
    - deconvolution of electron energy loss function

2. Fluctuations of WGTS column density (required < 0.1%)
    -  rear wall detector, Laser - Raman spectroscopy,
       T=30K stabilization, e-gun measurements

3. Transmission function
   - spatially resolved e-gun measurements  
 
4. WGTS charging due to decay ions (MC: φ < 20mV)
   - Injection of low energy (meV) electrons from the 
     rear end, diagnostic tools available
 
5. Final state distribution
   - reliable quantum chem. calculations

6. HV stability of retarding potential on 3ppm level required 
   - precise HV-Divider (PTB), monitor spectrometer, 
     calibration sources  

allow only few 
contributions with 
Δm

ν
2

 
≤  0.007 eV2

⇔   σ < 60 meV 

⇒ 3 ppm long term
     stability

fluctuations σ2 lead to a 
downward shift in m

ν
2

U
U

=
0.06
18575

≈3⋅10−6

m
2
=−22

Systematic effects and error budget
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≈3⋅10−6

Systematic effects and error budget

statistical uncertainty σ
stat

    ≈ 0.018 eV2

systematic uncertainty σ
sys,tot

 ≈ 0.017 eV2

 
→ sensitivity for upper limit: 0.2 eV/c2 (90% C.L.)

m(ν
e
) = 0.35 eV observable with 5σ

KATRIN sensitivity: 
5 year measurement 

(eff. 3 y of data)

m
2
=−22
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B. Monreal and J. Formaggio, PRD 80:051301, 2009

● Source similar to KATRIN: guiding magnetic field + 
low pressure T2 gas
 

● β electrons radiate coherent cyclotron radiation 
with frequency:

 

● Antenna array for cyclotron radiation detection

Measurement of coherent cyclotron radiation 
of tritium  electrons

Project 8: measuring energy by radiation

=
0


=

e B
E kme

combined antenna signal

UW (Seattle), MIT,
UCSB (Santa 

Barbara), Yale, Pacific
NW, Livermore, 

NRAO, KIT
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Phase 1: detecting single electrons from 83mKr

Prototype for 83mKr measurements

● 83mKr moving within a waveguide

● Cyclotron radiation picked up by cascaded cryogenic low
noise amplifiers

● B-field: 1 Tesla

● ω(18 keV) ~ 26 GHz

● P(18 keV) = 1.2 fW
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Phase 1: detecting single electrons from 83mKr

D. M. Asner et al., Phys. Rev. Lett. 114 (2015) 162501

First detection of cyclotron radiation 
from a single trapped electron

3.3 eV
FWHM

A. A. Esfahani et al., J. Phys. G 44 (2017) 5
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Phase 2: start of tritium spectroscopy

Project 8 outlook:

● T
2
 spectroscopy with Project 8 should enable a similar or slightly better sensitivity as with 

KATRIN (assuming 1011 molecules/cm3, 10 m3 sensitive volume and 1 year measuring 
time optimistically 100 meV could be reached)
 

● Need to consider new systematics (Doppler shift, magnetic field drifts / inhomogeneities, 
scattering, pile-up, ...) → lots of R&D work necessary !

● If a large (100 m3) atomic tritium source could be realized sensitivities down to 40 meV 
might be possible (see A. A. Esfahani et al., J. Phys. G 44 (2017) 5)

Setup for first tritium measurements courtesy J. Formaggio, RGH Robertson
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Electron capture in 163Ho

● 163Ho decays by electron capture 
(EC) with T

1/2
 ≈ 4570 y

(2 x 1011 atoms for 1 Bq)

● Atomic de-excitation by:
- X-ray emission
- Auger electrons
- Coster-Kronig transitions

● A non- zero neutrino mass  affects 
the de-excitation energy spectrum
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Calorimetric measurements

● Calorimetric measurement:
All the energy released in the electron 
capture process minus the one of the 
electron neutrino is measured by the 
detector

● Advantages:
- Source = detector
- All energy is detected

● Challenges: 
- Sufficient and clean 
   isotope production 
- ΔE

FWHM
 < 10 eV

- τ
risetime

 < 1 μs
- Muliplexed read-out

    of a large number of detectorsTo reach sub-eV sensitivity:
1014 decays in 1 year
10 Bq / detector → 105 detectors
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ECHO: Electron Capture 163Ho Experiment

Heidelberg (Univ., MPI-K), 
U Mainz, U Tübingen, 
TU Dresden, U Bratislava,
INR Debrecen, ITEP 
Moscow, PNPI St 
Petersburg, IIT Roorkee, 
Saha Inst. Kolkata

● Measurement of de-excitation energy using
Metallic Magnetic Calorimeters (MMC)
 

→ measure ΔT by determining change in
    magnetic properties

● Operated at 30 mK
 

● Rise Time ~ 130 ns
 

● E
FWHM

 = 7.6 eV  @ 6 keV (2013)
 

● Non-Linearity  < 1%  @ 6keV
courtesy L. Gastaldo
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Current status of ECHO

● High purity 163Ho source has been produced

● 163Ho ions have been successfully implanted 
in offline process
 

@ISOLDE-CERN in 32 pixels
@RISIKO in 8 pixels
@RISIKO in 64 pixels 

● Large MMC arrays have been tested and       
microwave SQUID multiplexing 
has been successfully demonstrated

● Independent Q-value measurement:
 

Q
EC

 = (2.858 ± 0.010
stat

 ± 0.05
syst

) keV
 

P. C.-O. Ranitzsch et al., 
Phys. Rev. Lett. 119 (2017) 122501

courtesy L. Gastaldo
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ECHO timeline

Prove scalability  with medium large experiment ECHo-1K (2015-2018)

- total activity  1000 Bq, high purity 163Ho source  (produced at reactor)
− ∆EFWHM < 5 eV

− τ
rise

 < 1 µs

- multiplexed arrays 
  → microwave SQUID multiplexing
- 1 year measuring time
  → 1010 counts 
  →  neutrino mass sensitivity m < 10 eV

Future:  ECHo-10M  for sub-eV sensitivity 

In addition: high energy resolution and high 
statistics 163Ho spectra allow to investigate      
the existence of sterile neutrinos in the 
eV-scale and keV-scale

courtesy L. Gastaldo
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HOLMES: EC experiment with TES readout

courtesy A. Nucciotti

● 163Ho implanted in Au absorber 
with transition edge sensor (TES) 
readout

● frequency multiplexing approach
for readout of multi-pixel detector
- custom chip μMUX17A
- 33 resonances in 500 MHz interval
  with a width of 2 MHz and 14 MHz 
  separation

● sampling frequency 400 kS/s
● energy resolution at endpoint ΔE

0
 = 4 eV

● rise time 35 μs, decay time 141 μs
 

Project status
● TES array and DAQ ready
● ion implanter setup in progress
● first 163Ho implantation coming shortly
● first spectrum late in 2017

→ 32 pixels for 1 month 
→ m

ν
 sensitivity ≈ 10 eV
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Summary

● Studies of β-decay kinematics offer a model-independent way to determine the 
neutrino mass, complementary to cosmology and 0νββ searches

● Besides neutrino mass the experiments in preparation are also sensitive to sterile 
neutrinos

● KATRIN will probe the neutrino mass range down to 0.2 eV

● Start of tritium data taking with KATRIN: June 2018

● Calorimetric experiments (ECHO, HOLMES) will provide an independent look at 
kinematic neutrino mass limits. The scalable approach and further R&D work will 
allow to reach a competitive level of sensitivity.

● New ideas and a lot of R&D work are required to go beyond 100 meV !
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