

Direct neutrino mass determination

V.M. Hannen for the KATRIN collaboration Institut für Kernphysik, Westfälische Wilhelms-Universität Münster

Volker Hannen, Solvay Workshop, 30.11.2017

Contents

Introduction

- Neutrino mass in particle physics / cosmology
- Current knowledge
- Experimental methods

Tritium β-decay experiments

- KATRIN
- Project 8

Holmium EC-decay experiments

- ECHO
- HOLMES

Summary

Neutrino mass in particle physics

- Nature of the neutrino: Majorana or Dirac particle, i.e. is the neutrino it's own anti-particle ?
- How to explain the many orders of magnitude difference between neutrino mass limits and masses of the charged fermions of the standard model
 - → sea-saw type I and type II mechanisms
- Possible connection to the generation of the observed matter - antimatter asymmetry in the universe
 - \rightarrow leptogenesis

Neutrino mass in cosmology

- Neutrinos are (after γ's) the second most abundant particle species in the universe
- As part of the hot dark matter, neutrinos have a significant influence on structure formation

- For large Σm_v values fine grained structures are washed out by the free streaming neutrinos

Chung-Pei Ma 1996

What we know (from v oscillations):

- Neutrino flavour eigenstates differ from their mass eigenstates
- Neutrinos oscillate, hence they must have mass
- Mixing angles and Δm² values known (with varying accuracies)

What we don't know :

- Normal or inverted hierachy ?
- Dirac or Majorana particle ?
- CP violating phases in mixing matrix ?
- No information about absolute mass scale ! (only upper limits)
- Existence of sterile neutrinos ?

Search for neutrino mass

Kinematic determination of m(v_e)

$$\frac{d\Gamma}{dE} = C p(E+m_e)(E_0-E)\sqrt{(E_o-E)^2 - m_{\nu_e}^2} F(Z+1,E)\Theta(E_0-E-m_{\nu_e})S(E)$$

$$C = \frac{G_F^2}{2\pi^3} \cos^2\theta_C |M|^2$$

(modified by final state distribution, recoil corrections, radiative corrections, ...)

 $m_{v_e} = \sqrt{\sum |U_{ei}|^2 m_i^2}$

Suitable Isotopes:

Tritium

- E₀ = 18.6 keV, T_{1/2} = 12.3 a
- S(E) = 1 (super-allowed)

Rhenium

• E₀ = 2.47 keV, T_{1/2} = 43.2 Gy

alternative approach:

Holmium (EC decay) • Q_{EC} ≈ 2.5 keV, T_{1/2} = 4570 y

(Main) experimental approaches

Detector requirements:

- large solid angle or source=detector approach
- high energy resolution
- low background
- low dead time / no pile up

Tritium based experiments

- **KATRIN**: gaseous tritium source with MAC-E type integrating spectrometer determining kinetic energy spectrum of β-decay electrons
- **Project 8:** gaseous tritium source determining kinetic energy spectrum of β-decay electrons by measuring cyclotron radiation emitted in a magnetic field

Holmium based experiments

- ECHO: Calorimetric measurement of energy released in EC decay of ¹⁶³Ho using Metallic Magnetic Calorimeters (MMC)
- HOLMES: Calorimetric measurement of energy released in EC decay of ¹⁶³Ho using Transition Edge Sensors (TES), successor of MARE effort
- NuMECS: similar experimental approach as HOLMES

KATRIN experiment at KIT

Volker Hannen, Solvay Workshop, 30.11.2017

MAC-E filter concept

Magnetic Adiabatic Collimation with Electrostatic Filter

- B drops by $2 \cdot 10^4$ from solenoid to analyzing plane $\rightarrow E_{\perp} \rightarrow E_{\parallel}$
- only electrons with $E_{II} > eU_0$ can pass the retardation potential
- Energy resolution $\Delta E = E_{\perp,max, start} \cdot B_{min} / B_{max} < 1 \text{ eV}$

Volker Hannen, Solvay Workshop, 30.11.2017

Windowless Gaseous Tritium Source

- beam tube
- guiding field
- temperature
- T₂ flow rate

- Ø = 9 cm , L = 10 m
- 3.6 T
- $T = 30 \text{ K} \pm 30 \text{ mK},$

95% ± 0.1 %

- 5.10¹⁹ molecules/s (40 g of T_2 / day)
- T₂ purity
- T₂ inlet pressure 10^{-3} mbar ± 0.1 %

- 3.6 T 30 K e⁻ 30 K tritium out tritium out tritium injection
- column density
- luminosity
- 5.10¹⁷ T₂/cm²
- osity 1.7·10¹¹ Bq

Pumping sections

Differential Pumping Section (DPS2-F)

- magnetic guiding field B = 5.6 T
- differential pumping using 2000 I/s TMPs
 → tritium reduction factor: 1.10⁵
- ion monitoring by FTICR
- ion manipulation by electrodes

Cryogenic Pumping Section (CPS)

- magnetic guiding field B = 5.6 T
- cryosorption of T_2 on Ar frost at $\approx 3 \text{ K}$
 - \rightarrow tritium reduction factor **1.10**⁻⁷
- within 60 days: accumulation of 1 Ci

Main-Spectrometer

- 18.6 kV retardation voltage, $\sigma < 60 \text{ meV}$
 - 0.93 eV resolution
 - pressure < 10⁻¹¹ mbar
 - Air coils for earth magnetic field compensation
 - Double layer wire electrode for background reduction and field shaping

Focal Plane Detector

Focal plane detection system

- segmented Si PIN diode:
 90 mm Ø, 148 pixels, 50 nm dead layer
- energy resolution ≈ 1 keV
- pinch and detector magnets up to 6 T
- post acceleration up to 30kV
- active veto shield

pre-amplifier wheel

Beam line commissioning

Technical start of KATRIN: "1st light", photo-electrons from rear wall & and ions

Testing complete 70m long beamline with electrons:

- alignment
- magn. stearing of pencil beam

and with ions:

- ion removal

no tritium yet

Commissioning campaign with ^{83m}Kr

Commissioning campaign with ^{83m}Kr

Systematic effects and error budget

WWU MÜNSTER

1. Inelastic scattering of ß's in the source (WGTS)

- calibration measurements with e-gun necessary
- deconvolution of electron energy loss function
- 2. Fluctuations of WGTS column density (required < 0.1%)
 - rear wall detector, Laser Raman spectroscopy, T=30K stabilization, e-gun measurements
- 3. Transmission function
 - spatially resolved e-gun measurements
- 4. WGTS charging due to decay ions (MC: ϕ < 20mV)
 - Injection of low energy (meV) electrons from the rear end, diagnostic tools available
- 5. Final state distribution
 - reliable quantum chem. calculations
- 6. HV stability of retarding potential on 3ppm level required
 - precise HV-Divider (PTB), monitor spectrometer, calibration sources

fluctuations σ^2 lead to a downward shift in m_y^2

$$\Delta m_{\nu}^2 = -2 \sigma^2$$

allow only few contributions with $\Delta m_v^2 \le 0.007 \text{ eV}^2$ $\Leftrightarrow \sigma < 60 \text{ meV}$

 $\frac{\Delta U}{U} = \frac{0.06}{18575} \approx 3 \cdot 10^{-6}$

⇒3 ppm long term stability

Systematic effects and error budget

1.1

2

 Inelastic scattering of ß's in the source (WGTS) calibration measurements with e-gun necessary deconvolution of electron energy loss function Fluctuations of WGTS column density (required < 0.1%) 		fluctuations σ^2 lead to a downward shift in m_v^2 $\Delta m_v^2 = -2 \sigma^2$
KATRIN sensitivity: 5 year measurement (eff. 3 y of data)	statistical uncertainty systematic uncertainty \rightarrow sensitivity for upper l $m(v_e) = 0.35 eV obse$	$σ_{stat}$ ≈ 0.018 eV ² $σ_{sys,tot}$ ≈ 0.017 eV ² imit: 0.2 eV/c ² (90% C.L.) ervable with 5σ
 5. Final state distribution reliable quantum chem. calculations 6. HV stability of retarding potential on 3ppm level required precise HV-Divider (PTB), monitor spectrometer, calibration sources 		$\frac{\Delta U}{U} = \frac{0.06}{18575} \approx 3 \cdot 10^{-6}$ $\Rightarrow 3 \text{ ppm long term}$ stability

Project 8: measuring energy by radiation

Measurement of coherent cyclotron radiation of tritium β electrons

- Source similar to KATRIN: guiding magnetic field + low pressure T₂ gas
- β electrons radiate coherent cyclotron radiation with frequency:

 $\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{e B}{E_k + m_e}$

UW (Seattle), MIT, UCSB (Santa Barbara), Yale, Pacific NW, Livermore, NRAO, KIT

Antenna array for cyclotron radiation detection

B. Monreal and J. Formaggio, PRD 80:051301, 2009

Phase 1: detecting single electrons from ^{83m}Kr

Prototype for ^{83m}Kr measurements

- ^{83m}Kr moving within a waveguide
- Cyclotron radiation picked up by cascaded cryogenic low noise amplifiers
- B-field: 1 Tesla
- $\omega(18 \text{ keV}) \sim 26 \text{ GHz}$
- P(18 keV) = 1.2 fW

Waveguide Cut-away

A. A. Esfahani et al., J. Phys. G 44 (2017) 5

Phase 2: start of tritium spectroscopy

Project 8 outlook:

- T₂ spectroscopy with Project 8 should enable a similar or slightly better sensitivity as with KATRIN (assuming 10¹¹ molecules/cm³, 10 m³ sensitive volume and 1 year measuring time optimistically 100 meV could be reached)
- Need to consider new systematics (Doppler shift, magnetic field drifts / inhomogeneities, scattering, pile-up, ...) → lots of R&D work necessary !
- If a large (100 m³) atomic tritium source could be realized sensitivities down to 40 meV might be possible (see A. A. Esfahani et al., J. Phys. G 44 (2017) 5)

Electron capture in ¹⁶³Ho

- ¹⁶³Ho decays by electron capture (EC) with T_{1/2} ≈ 4570 y $(2 \times 10^{11} \text{ atoms for } 1 \text{ Bq})$
- Atomic de-excitation by:

 - Auger electrons
 - Coster-Kronig transitions
- A non- zero neutrino mass affects the de-excitation energy spectrum

2.81

MÜNSTFR

To reach sub-eV sensitivity:

 10^{14} decays in 1 year 10 Bq / detector $\rightarrow 10^{5}$ detectors • Calorimetric measurement: All the energy released in the electron capture process minus the one of the electron neutrino is measured by the detector

Advantages:

- Source = detector
- All energy is detected

Challenges:

- Sufficient and clean isotope production
- $-\Delta E_{FWHM} < 10 \text{ eV}$
- $T_{risetime}$ < 1 µs
- Muliplexed read-out of a large number of detectors

ECHO: Electron Capture ¹⁶³Ho Experiment

- Measurement of de-excitation energy using Metallic Magnetic Calorimeters (MMC)
 - \rightarrow measure ΔT by determining change in magnetic properties

$$\Delta \Phi_{\rm s} \propto \frac{\partial M}{\partial T} \Delta T \quad \rightarrow \quad \Delta \Phi_{\rm s} \propto \frac{\partial M}{\partial T} \frac{E}{C_{\rm sens} + C_{\rm abs}}$$

- Operated at 30 mK
- Rise Time ~ 130 ns
- *E*_{FWHM} = 7.6 eV @ 6 keV (2013)
- Non-Linearity < 1% @ 6keV

Heidelberg (Univ., MPI-K), U Mainz, U Tübingen, TU Dresden, U Bratislava, INR Debrecen, ITEP Moscow, PNPI St Petersburg, IIT Roorkee, Saha Inst. Kolkata

courtesy L. Gastaldo

- High purity ¹⁶³Ho source has been produced
- ¹⁶³Ho ions have been successfully implanted in offline process

@ISOLDE-CERN in 32 pixels
@RISIKO in 8 pixels
@RISIKO in 64 pixels

- Large MMC arrays have been tested and microwave SQUID multiplexing has been successfully demonstrated
- Independent Q-value measurement:

 $Q_{EC} = (2.858 \pm 0.010_{stat} \pm 0.05_{syst}) \text{ keV}$

P. C.-O. Ranitzsch et al., Phys. Rev. Lett. 119 (2017) 122501

ECHO timeline

Prove scalability with medium large experiment **ECHo-1K** (2015-2018)

- total activity 1000 Bq, high purity ¹⁶³Ho source (produced at reactor)
- $-\Delta E_{FWHM} < 5 \text{ eV}$
- $-\tau_{rise}$ < 1 µs
- multiplexed arrays
 - \rightarrow microwave SQUID multiplexing
- 1 year measuring time
 - $\rightarrow 10^{10} \text{ counts}$
 - \rightarrow neutrino mass sensitivity m < 10 eV

Future: ECHo-10M for sub-eV sensitivity

In addition: high energy resolution and high statistics ¹⁶³Ho spectra allow to investigate the existence of **sterile neutrinos** in the eV-scale and keV-scale

HOLMES: EC experiment with TES readout

HOLMES

- ¹⁶³Ho implanted in Au absorber with transition edge sensor (TES) readout
- frequency multiplexing approach for readout of multi-pixel detector
 - custom chip μ MUX17A
 - 33 resonances in 500 MHz interval with a width of 2 MHz and 14 MHz separation
- sampling frequency 400 kS/s
- energy resolution at endpoint $\Delta E_0 = 4 \text{ eV}$
- rise time 35 µs, decay time 141 µs

Project status

- TES array and DAQ ready
- ion implanter setup in progress
- first ¹⁶³Ho implantation coming shortly
- first spectrum late in 2017
 - \rightarrow 32 pixels for 1 month
 - $\rightarrow m_{v}$ sensitivity $\approx 10 \text{ eV}$

 $200 \times 200 \ \mu m^2$ absorber C = 0.9 pJ/K G = 570 pW/K

courtesy A. Nucciotti

- Studies of β-decay kinematics offer a model-independent way to determine the neutrino mass, complementary to cosmology and 0vββ searches
- Besides neutrino mass the experiments in preparation are also sensitive to sterile neutrinos
- KATRIN will probe the neutrino mass range down to 0.2 eV
- Start of tritium data taking with KATRIN: June 2018
- Calorimetric experiments (ECHO, HOLMES) will provide an independent look at kinematic neutrino mass limits. The scalable approach and further R&D work will allow to reach a competitive level of sensitivity.
- New ideas and a lot of R&D work are required to go beyond 100 meV !