

EDMs: particle physics for the poor

Rob G. E. Timmermans

"Beyond the Standard Model with neutrinos & nuclear physics"

Brussels, Nov. 29 - Dec. 1, 2017

With Jordy de Vries, Emanuele Mereghetti, Cheng-Pang Liu, Bira van Kolck

university of groningen

faculty of science and engineering van swinderen institute for particle physics and gravity

A new world record

- ✓ J. Baron *et al*. (Harvard-Yale)
 - Science **343**, 269 (2014)
 - New J. Phys. 19, 073029 (2017)

Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron

The ACME Collaboration,* J. Baron,¹ W. C. Campbell,² D. DeMille,³† J. M. Doyle,¹† G. Gabrielse,¹† Y. V. Gurevich,¹‡ P. W. Hess,¹ N. R. Hutzler,¹ E. Kirilov,³§ I. Kozyryev,³|| B. R. O'Leary,³ C. D. Panda,¹ M. F. Parsons,¹ E. S. Petrik,¹ B. Spaun,¹ A. C. Vutha,⁴ A. D. West³

The Standard Model of particle physics is known to be incomplete. Extensions to the Standard Model, such as weak-scale supersymmetry, posit the existence of new particles and interactions that are asymmetric under time reversal (T) and nearly always predict a small yet potentially measurable electron electric dipole moment (EDM), d_e , in the range of 10^{-27} to $10^{-30} e \cdot cm$. The EDM is an asymmetric charge distribution along the electron spin (S) that is also asymmetric under T. Using the polar molecule thorium monoxide, we measured $d_e = (-2.1 \pm 3.7_{stat} \pm 2.5_{syst}) \times 10^{-29} e \cdot cm$. This corresponds to an upper limit of $|d_e| < 8.7 \times 10^{-29} e \cdot cm$ with 90% confidence, an order of magnitude improvement in sensitivity relative to the previous best limit. Our result constrains T-violating physics at the TeV energy scale.

Game plan

- 1. Towards discovery
 - ✓ EDMs in the SM and beyond
 - ✓ The classic experiments
- 2. Towards interpretation, top-down versus bottom-up
 ✓ Unraveling microscopic T violation: EFT for EDMs
- 3. Hadronic EDMs
 - ✓ Nucleons, light nuclei & diamagnetic atoms
- 4. [... The electron EDM
 - ✓ Paramagnetic atoms & molecules...]
- 5. Take-home messages

29-11-2017

What is an EDM?

- ✓ A permanent EDM violates P & T, hence [CPT theorem \rightarrow] also CP
 - Permanent charge separation along the spin axis, unit = "e cm"

PhD thesis J. J. Hudson

 \checkmark An atomic physics quantity of interest to particle physics

$$\mathcal{L} = \frac{d}{2} \,\overline{\psi} \gamma_5 \sigma_{\mu\nu} \psi F^{\mu\nu} \to H = -d \,\vec{\sigma} \cdot \vec{E}$$

- EDM = "dimension-6 operator"
- SM EDMs are inaccessible, but expected just "beyond" SM

The hunt for discovery

	System	Group	Limit in <i>e</i> cm	C.L.	Value in <i>e</i> cm	Year
	²⁰⁵ TI	Berkeley	1.6×10^{-27}	90%	6.9(7.4) × 10 ⁻²⁸	2002
	YbF	Imperial	10.5×10^{-28}	90	$-2.4(5.7)(1.5) \times 10^{-28}$	2011
tror	$Eu_{0.5}Ba_{0.5}TiO_3$	Yale	6.05×10^{-25}	90	$-1.07(3.06)(1.74) \times 10^{-25}$	2012
i o o	PbO	Yale	1.7×10^{-26}	90	$-4.4(9.5)(1.8) \times 10^{-27}$	2013
Ű	HfF⁺	JILA/Boulder	1.3×10^{-28}	90	$0.9(7.7)(1.7) \times 10^{-29}$	2017
	ThO	Harvard/Yale	9.4 × 10 ⁻²⁹	90	-2.2(4.8) × 10 ⁻²⁹	2014
	muon	E821 BNL <i>g</i> -2	1.8×10^{-19}	95	$0.0(0.2)(0.9) \times 10^{-19}$	2009
	neutron	Sussex-RAL-ILL	3.0×10^{-26}	90	$-0.21(1.82) \times 10^{-26}$	2015
	¹²⁹ Xe	UMich	6.6×10^{-27}	95	$0.7(3.3)(0.1) \times 10^{-27}$	2001
	¹⁹⁹ Hg	UWash	7.4×10^{-30}	95	$2.20(2.75)(1.48) \times 10^{-30}$	2016
	²²⁵ Ra	ANL	1.4×10^{-23}	95	4.0(6.0)(0.2) × 10 ⁻²⁴	2016

✓ 25-30 more-or-less small-scale expt's worldwide with \approx 500 researchers

Electroweak CP violation

- ✓ CKM quark-mixing matrix
 - All CP-odd effects involve 3 quark families
 - Jarlskog invariant $J_{CP} = \sin^2 \theta_{12} \sin \theta_{13} \sin \theta_{23} \sin \delta_{CKM} \approx 3 \times 10^{-5}$
- $\checkmark~$ EDMs due to δ_{CKM} are unmeasurably small
 - EDM = 2nd-order T-violation at least e.g. $(d_n)_{CKM} \approx (10^{-7})^2 J_{CP} e/M$
 - Quark EDMs = 0 at 2-loop order $\rightarrow (d_n)_{CKM} = O(10^{-32}) e \text{ cm}$
 - Electron EDM = 0 at 3-loop order $\rightarrow (d_e)_{CKM} = O(10^{-38}) e \text{ cm}$
- ✓ "Long-distance" contributions to *n*EDM

The QCD vacuum angle

- - Total derivative, but modifies physics: P and T violation
 - − Strong CP problem: $d_n \rightarrow \overline{\theta} = \theta + \arg \det M_q \le O(10^{-10})$, not O(1)...

- ✓ Long-distance contributions to $nEDM \rightarrow non-perturbative QCD$
 - "Soft-pion" theorem: Chiral log dominates $\, d_n \sim heta \, \log m_\pi^2 \,$
 - Nowadays: Chiral perturbation theory = EFT for QCD

- ✓ A nonzero EDM implies new, super-weak physics
 - EDMs arise at 1-loop level from new δ_{CP} 's OR from θ_{QCD} (also new!)

Neutron EDM

✓ Strong CP problem

- If $\theta = O(1) \rightarrow d_n = O(10^{-15}) e$ cm would have been discovered in 1950s

The killer *n*EDM

- Norman Ramsey (1915-2011)
 "Ultimately the validity of all such symmetry arguments must rest on experiment"
- ✓ Purcell & Ramsey (1950)
 - P violation
- ✓ Lee & Yang, Landau (1957)
 - T violation
 - CP = true mirror?
 - No! (1964)
- ✓ First direct limit (1951→ 1957) - $d_n = -0.1(2.4) \times 10^{-20} e$ cm

a. Feinberg (1965) (EM) b. Salzman & Salzman (1965) (EM) c. Barton & White (1969) (EM) d. Broadhurst (1970) (EM) e. Babu & Suzuki (1967) (MW, $\Delta S = 0$) f. Meister & Rhada (1964) (MW, $\Delta S=0$) g. Gourishankar (1968) (MW, $\Delta S=1$) h. McNamee & Pati (1969) (MW, $\Delta S=0, 1$) i. Nishijima & Swank (1967) (MW, $\Delta S=0$) j. Nishijima (1969) (MW, $\Delta S=0$) k. Boulware (1965) (MW, $\Delta S = 0$) I. Wolfenstein (1964a,b) (SW, $\Delta S = 2$) m. Pais & Primack (1973a,b) (MW) n. Lee (1973, 1974) (MW) o. Okun (1969) (SW) p. Mohapatra (1972) (MW) q. Frenkel & Ebel (1974a) (MW) r. Wolfenstein (1974) (SW) s. Weinberg (1976) (MW) t. Pakvasa & Tuan (1975) (MW)

u. Mohapatra & Pati (1975) (MW) v. Clark & Randa (1975) (MS) w. Chodos & Lane (1972) (MW) x. Feinberg & Mani (1965) (W, $\Delta S = 1$) v. Gourishankar (1968) (MW, $\Delta S = 1$) z. Filipov et al (1968) (EM) a1. McNamee & Pati (1969) (MW, $\Delta S = 0, 1$) b1. Barton & White (1969) (EM, MW, $\Delta S = 0, 1$ c1. McCliment & Teeters (1970) (MW) d1. Frenkel & Ebel (1974a,b) e1. Nanopoulos & Yildiz (1979) (Q) f1. Eichten et al (1980) (MW, H) g1. Ellis et al (1980, 1981) (this paper has the interesting characteristic that it establishes an order-of-magnitude lower limit to D of 3×10^{-28} cm) h1. Crewther et al (1979) i1. Shizuya & Tye (1980) (MW, H) i1. Epstein (1980)

The killer *e*EDM

✓ Upper limit $|d_e| < 8.7 \times 10^{-29} e \text{ cm} \rightarrow \text{scale of new physics } \Lambda > \text{few TeV}$

The need for interpretation

- ✓ Limit on ¹⁹⁹Hg EDM
 - Swallows et al., 2013
 - Lots of crappy modeling
- ✓ "Just one number?"
 - Gives *scale* of new physics

TABLE IV. Limits on *CP*-violating parameters (defined in the text) based on our new experimental limit for $d(^{199}$ Hg) (95% C.L.) compared to limits from the YbF (90% C.L.) [38], Tl (90% C.L.) [37], neutron (90% C.L.) [47], or TlF (95% C.L.) [59] experiments. Values that improve upon (complement) previous limits appear above (below) the horizontal line. Particle theory interpretation references are given in the last column.

Parameter	¹⁹⁹ Hg bound	Hg theory	Bes	t other limit	
$\tilde{d}_{q}(\mathrm{cm})^{\mathrm{a}}$	6×10^{-27}	[58]	n:	3×10^{-26}	[60]
$d_p(e \text{ cm})$	8.6×10^{-25}	[46]	TIF	6×10^{-23}	[<mark>61</mark>]
\dot{C}_{SP}	6.6×10^{-8}	[34]	T1	2.4×10^{-7}	[<mark>62</mark>]
C_{PS}	5.2×10^{-7}	[39]	TlF	3×10^{-4}	[5]
C_T	1.9×10^{-9}	[39]	TlF	4.5×10^{-7}	[5]
$\bar{\theta}_{QCD}$	5.3×10^{-10}	[56]	n	2.4×10^{-10}	[<mark>60</mark>]
$d_n(e \text{ cm})$	6.3×10^{-26}	[46]	n	2.9×10^{-26}	[<mark>60</mark>]
$d_e(e \text{ cm})$	3×10^{-27}	[33,36]	YbF	1.05×10^{-27}	[<mark>60</mark>]

^aFor ¹⁹⁹Hg, $\tilde{d}_q = (\tilde{d}_u - \tilde{d}_d)$; for n, $\tilde{d}_q = (0.5\tilde{d}_u + \tilde{d}_d)$.

✓ The EDM program:

- How to disentangle the different sources of T violation?
- How many & which observables are needed?
- EFT from 1st principles: systematic + model independent + errors

The SUSY CP problem

- ✓ MSSM has > 100 parameters, 10s δ_{CP} -like
- ✓ Typical SUSY prediction (NDA, m_d = 7 MeV)

$$d_n = 5 \cdot 10^{-24} \frac{\mathrm{Im} A'_d (100 \,\mathrm{GeV})^2}{m_{\mathrm{gluino}}^3} e \,\mathrm{cm}$$
$$A'_d \sim \tan\beta = v_2/v_1$$

- ✓ eEDM & dEDM enhanced for large tanβ
 − Friction with Higgs mass?
- ✓ Unnatural SUSY scale?
 - $M_{\rm SUSY}$ from 500 GeV \rightarrow 2 TeV

- ✓ Current EDM null results → probe 1-10 TeV scale or $\delta_{CP} \le O(10^{-2})$
 - − Next generation → sensitive to 10-100 TeV scale or $\delta_{CP} \le O(10^{-4})$

The EDM landscape

✓ Scales

✓ Theory is essential for the interpretation of EDMs of complex systems

The Standard Model as an effective field theory

29-11-2017

Dimension-6 sources

29-11-2017

- ✓ Electroweak symmetry breaking, integrate out heavy particles
 - EDMs flip chirality \rightarrow effectively dimension 6, prop. to $m = g_{Yukawa} v/V2$

Summary: dimension-4 and -6 sources @ 1 GeV

Next: nonperturbative QCD

The magnificent seven

✓ T violation at nuclear scales (non-perturbative QCD) from

- $\mathcal{L} = -2\overline{N}(\overline{d}_0 + \overline{d}_1\tau_3)S^{\mu}Nv^{\nu}F_{\mu\nu} + \overline{g}_0\overline{N}\vec{\tau}\cdot\vec{\pi}N + \overline{g}_1\overline{N}\pi_3N + \overline{C}_1\overline{N}N\partial_{\mu}(\overline{N}S^{\mu}N) + \overline{C}_2\overline{N}\vec{\tau}N\cdot\partial_{\mu}(\overline{N}S^{\mu}\vec{\tau}N)$
- ✓ Different models of CP violation predict a different hierarchy!
 - QCD theta term, left-right symmetric models, SUSY, multi-Higgs, ...

Example: the QCD theta term

- ✓ Theta term = chiral pseudo-vector, same as quark mass difference
 - Link to isospin violation

$$-\overline{\theta}\frac{g^2}{64\pi^2}\epsilon^{\mu\nu\alpha\beta}G^a_{\mu\nu}G^a_{\alpha\beta}\longrightarrow \frac{m_um_d}{m_u+m_d}\overline{\theta}\,\overline{q}i\gamma_5q$$

- ✓ P- and T-odd pion-nucleon interactions
 - Traditionally expected to be dominant, since er = long range

$$\overline{g}_{0}^{\theta} = \frac{(M_{n} - M_{p})^{\text{strong}}}{F_{\pi}} \frac{(1 - \varepsilon^{2})}{2\varepsilon} \overline{\theta} = -0.018(7) \overline{\theta}$$
$$\overline{g}_{1}^{\theta} = \frac{8c_{1}(\delta m_{\pi}^{2})^{\text{strong}}}{F_{\pi}} \frac{(1 - \varepsilon^{2})}{2\varepsilon} \overline{\theta} = 0.003(2) \overline{\theta}$$

– Input from phenomenology ($\pi N \sigma$ -term) & LQCD

$$\varepsilon = \frac{m_u - m_d}{m_u + m_d} = -0.35(10)$$

29-11-2017

Nucleon EDMs

- ✓ 1-loop diagrams UV divergent
 - 2 counterterms needed

- 3 unknowns... can be fitted by any source
- For each source neutron & proton EDMs of same order
- Absorb loop contributions in $d_{0,1}$

✓ For theta term, with LQCD input:
$$\begin{aligned} d_n^{\theta} &= -2.9(9) \times 10^{-16} \,\overline{\theta} \, e \, \mathrm{cm} \\ d_p^{\theta} &= +1.1(1.1) \times 10^{-16} \,\overline{\theta} \, e \, \mathrm{cm} \end{aligned}$$

Deuteron EDM

- ✓ Contributions:
 - Sum of nucleon EDMs = $d_n + d_p$
 - T-violating pion exchange & NN interactions

- ✓ "Chiral filter": deuteron is special case due to N = Z
 - ${}^{3}S_{1} \rightarrow {}^{3}P_{1}$ with \overline{g}_{1} coupling, back via E1 transition
 - ${}^{3}S_{1} \rightarrow {}^{1}P_{1}$ with \overline{g}_{0} coupling, no E1 back (same for $\overline{C}_{1}, \overline{C}_{2}$)
- ✓ Little model dependence
 - $d_D = d_n + d_p + [0.180(23)\overline{g}_1 + 0.0028(3)\overline{g}_0] e \,\mathrm{fm}$
 - For quark color-EDM d_D is significantly larger than $d_n + d_p$
- ✓ Way to extract theta, or more generally \overline{g}_1 , from data $d_D^{\overline{\theta}} = [-1.8(1.4) + 0.55(36)(5) - 0.05(2)(1)] \times 10^{-16} \overline{\theta} e \text{ cm}$

Helion & triton EDMs

✓ Calculated for all sources in consistent EFT framework

- Hadronic uncertainties still dominate over nuclear ones
- Unreliable but small contributions from interactions with $\overline{C}_1, \overline{C}_2$
- ✓ For *e.g.* QCD theta term

$$d_{^{3}\text{He}}^{\overline{\theta}} = [-2.60(0.80) - 1.36(88)] \times 10^{-16} \,\overline{\theta} \, e \, \text{cm}$$
$$d_{^{3}\text{H}}^{\overline{\theta}} = [+1.10(0.96) + 2.16(85)] \times 10^{-16} \,\overline{\theta} \, e \, \text{cm}$$

✓ Master table:

	d ₀	d ₁	\boldsymbol{g}_0	g 1	<i>C</i> ₁	<i>C</i> ₂
n	1	-1	-	-	-	-
p	1	1	-	-	-	-
D	2	0	≈ 0	-0.19	-	-
³ He	0.83	-0.93	-0.15	-0.28	-0.01	0.02
³ Н	0.85	0.95	0.15	-0.28	0.01	-0.02

- Clear strategy to disentangle the sources!

The Schiff shielding theorem

- \checkmark EDM of a nonrelativistic atom = 0 *i.e.* point particles, Coulomb force
 - Electrostatic force balance, rearrangement of constituents
- ✓ Loopholes for measurability of EDMs (Schiff, 1963; Sandars, 1965)
 - Relativistic (e) + finite-size (N) + magnetic (e-N) effects
 - Residual interaction = P- and T-odd Schiff moment

EDMs of diamagnetic atoms

PRL 116, 161601 (2016) PHYSICAL REVIEW LETTERS

week ending 22 APRIL 2016

Ş

Reduced Limit on the Permanent Electric Dipole Moment of ¹⁹⁹Hg

B. Graner,^{*} Y. Chen (陳宜), E. G. Lindahl, and B. R. Heckel Department of Physics, University of Washington, Seattle, Washington 98195, USA (Received 19 January 2016; revised manuscript received 8 March 2016; published 18 April 2016)

This Letter describes the results of the most recent measurement of the permanent electric dipole moment (EDM) of neutral ¹⁹⁹Hg atoms. Fused silica vapor cells containing enriched ¹⁹⁹Hg are arranged in a stack in a common magnetic field. Optical pumping is used to spin polarize the atoms orthogonal to the applied magnetic field, and the Faraday rotation of near-resonant light is observed to determine an electric-field-induced perturbation to the Larmor precession frequency. Our results for this frequency shift are consistent with zero; we find the corresponding ¹⁹⁹Hg EDM $d_{\text{Hg}} = (-2.20 \pm 2.75_{\text{stat}} \pm 1.48_{\text{syst}}) \times 10^{-30}e$ cm. We use this result to place a new upper limit on the ¹⁹⁹Hg EDM $|d_{\text{Hg}}| < 7.4 \times 10^{-30}e$ cm (95% C.L.), improving our previous limit by a factor of 4. We also discuss the implications of this result for various *CP*-violating observables as they relate to theories of physics beyond the standard model.

✓ Nuclear EDM shielded

- Suppression factor $4Z^2 R_N / a_0 \approx 3 \times 10^{-4}$
- Hypersensitive experiments possible
- Difficult to interpret theoretically
- ✓ ²²⁵Ra: octupole deformation \rightarrow factor 10-100 enhancement
- ✓ ¹²⁹Xe: co-located with ³He + SQUIDs \rightarrow superlong spin coherence time

EDM of the ¹⁹⁹Hg atom

✓ Atomic part reasonably under control

$$d_{\rm Hg} = 2.8(6) \times 10^{-4} \, S_{\rm Hg} \, {\rm fm}^{-2}$$

✓ Nuclear part not...

 $S_{\text{Hg}} = [0.4(3)\overline{g}_0 + 0.4(8)\overline{g}_1] \ e \,\text{fm}^3$

- Complicated many-body calculation with a nuclear model

Group	Method	<i>a</i> ₀	<i>a</i> ₁	a ₂
Flambaum <i>et al.</i>	Schematic	0.087	0.087	0.174
Dmitriev, Sen'kov	Phen. RPA	0.00004	0.055	0.009
de Jesus, Engel	Skyrme QRPA	0.002-0.010	0.057-0.090	0.011-0.025
Engel <i>et al.</i>	Odd-A Skyrme MF	0.009-0.041	-0.027-+0.005	0.009-0.024

- Core polarization is important, quenches single-particle result
- Contribution from nucleon EDMs?
- Reasons for discrepancies not clear... ¹⁹⁹Hg = difficult, "soft" nucleus
- ✓ At present could not be used to extract *e.g.* the value of θ_{QCD} ...

EDM of the ²²⁵Ra atom

- ✓ Big enhancement from atomic degeneracy
- ✓ Additional factor $O(5 \times 10^{1-2})$ from octupole ("pear-shaped") deformation
 - Shape asymmetry leads to parity doubling
 - ²²⁵Ra: low-lying excited 1/2⁻ state 55 keV above 1/2⁺ ground state
 - Calculations claimed to be more reliable than for ¹⁹⁹Hg

Group	Method	a _0	<i>a</i> ₁	a ₂
Spevak <i>et al.</i>	Octupole-def. WS	-18.6	18.6	-37.2
Dobaczewski, Engel	Odd-A Skyrme MF	-1.0-(-4.7)	6.0-21.5	-3.9-(-11.0)

- $\checkmark~$ Schiff moment correlated with E3 transitions
 - Measured @ ISOLDE in ²²⁰Rn, ²²⁴Ra
- ✓ 2016: First limit on ²²⁵Ra EDM

Comparison

Nucleus	Method	a ₀	<i>a</i> ₁	a ₂
¹²⁹ Xe	Phen. RPA	-0.0008	-0.0006	-0.0009
¹⁹⁹ Hg	Several	0.01	±0.02	0.02
²²⁵ Ra	Odd-A Skyrme MF	-1.5	6.0	-4.0

- ✓ ¹²⁹Xe factor 10 less sensitive as ¹⁹⁹Hg, also "difficult" nucleus
- ✓ Enhancements in ²²⁵Ra overcome the Schiff screening
 - Similar sensitivity as light nuclei
- ✓ Job of nuclear-structure calculations: $S = S(d_n, d_p, \overline{g}_0, \overline{g}_1, \overline{C}_1, \overline{C}_2, \overline{\Delta}_{\pi})$
 - Requires a chiral EFT for heavy nuclei
 - Microscopic nuclear calculations using few-nucleon input
 - Careful implementation of the Schiff theorem

Amplification of *e*EDMs in paramagnetic atoms

- Shielding factor (Sandars, 1965)
 $K_{\rm atom} = d_{\rm atom}/d_e \simeq Z^3 \alpha^2 \chi$
 - $Z^2 \alpha^2$ is relativistic factor, Z from E-field of nucleus
 - χ is polarizability, ≈ 10 for Cs

$$\mathbf{d}_{\text{atom}} = \sum_{n'} \frac{\langle ns| - d_e(\beta - 1)\sigma \cdot \mathbf{E} | n'p \rangle \langle n'p | - e\mathbf{r} | ns \rangle}{E_{ns} - E_{n'p}} + c.c.$$

✓ Requires an atomic-structure calculation for ₃₇Rb, ₅₅Cs, ₈₁Tl, ₈₇Fr, ₈₈Ra*

- $d_{\text{atom}}/d_e \approx 24, 114, -570, 1150, 40.000$ for calculations

$$K_{\rm Tl} = -(570 \pm 20) \rightarrow d_e < 1.6 \times 10^{-27} \ e {\rm cm}$$

- Caveat: T-odd electron-nucleon forces!

$$d_{\rm Tl} = -(570 \pm 20)d_e - (7.0 \pm 2.0) \times 10^{-18}C_S \ e {\rm cm}$$

(Semi-)leptonic CP violation

Polar molecules

- ✓ Convert strong external electric field to HUGE internal field
 - Effective field = nonlinear function of external field

Polar molecules

- ✓ Assume no cancellation with C_s
 - OR no cancellation with eEDM
- ✓ Find a signal, what is responsible?
 - Strong correlations
 - Need two measurements

	TI	YbF	ThO
β/α in 10 ⁻²⁰ e.cm	1.15	0.85	1.25

- ✓ Pseudo-scalar & tensor interactions?
 - Constraints from para- (Cs, Fr)
 or diamagnetic atoms (Xe, Hg, Ra)? -6x10⁻²⁷

 $d_e < 8.7 \times 10^{-29} ecm$ $C_S < 5.9 \times 10^{-9}$

✓ Several models have one dominant source, e.g. eEDM in mLRSM

29-11-2017

A historical curiosity @ Brussels

- ✓ Matter-antimatter asymmetry of the Universe requires (1967)
 - Violation of baryon number
 - Violation of C and CP
 - Departure of thermal equilibrium
 - (or: CPT violation)
- ✓ Not enough CP violation within the SM, off by factor $O(10^9)$
 - Physics at a new scale of $O(\text{TeV}) \rightarrow \text{measurable EDMs}$?
 - Caveat: Leptogenesis!

- "If the weak interactions of atomic physics would contrary to expectation not be invariant for time inversion, would this have any consequences for cosmological or cosmogonic questions?"
 - J. R. Oppenheimer after talk "The arrow of time" by T. Gold
 - "La structure et l'évolution de l'Univers", Onzième conseil de physique, Bruxelles, 9-13 juin 1958

Take-home messages

✓ Message 1: EDM experiments are HYPER-sensitive

- Next generation probes energy scales up to 10 - 100 TeV

✓ Message 2: EDMs are ULTRA-relevant to SUPER-symmetry *et al*.

- Upon discovery, we can disentangle the sources of CP violation

- ✓ "Data! Data! We cannot make bricks without clay!"
 - "It is quite a three-pipe problem..."

