

A Solvay workshop in Brussels, November 29th - December 1st 2017

V_{ud} from nuclear mirror transitions

Oscar Naviliat-Cuncic

National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy Michigan State University

Outline

- Definitions, candidates, dynamic properties
- A short review of prior work
- Extraction of V_{ud}
- New results: spectroscopy and correlations
- Summary

Nuclear mirror transitions in T=1/2 doublets

- Super-allowed transitions between isobaric analogue states with T=1/2 (doublets).
- Occur in mirror nuclei, between states with same spins and parities.

~30 potential candidates

- Parent nucleus located on the Z=N+1 line.
- All β^+ transitions except *n* and ³H decays.

Michigan State University National Science Foundation

Vector strength in semi-leptonic decays

• Phenomenology within SM

$$G_F = \frac{g^2}{4\sqrt{2}m_W^2}$$

Michigan State University National Science Foundation $G_V = G_F \cos \theta_C$ $G_\Lambda =$ = $G_F V_{ud}$ =

 $G_{\Lambda} = G_F \sin \theta_C$ $=G_F V_{us}$

Ft-value for a mirror transition

• Mirror decays include also the axial-vector interaction

$$\xi^{2} = C_{V}^{2}M_{F}^{2} + C_{A}^{2}M_{GT}^{2} = C_{V}^{2}M_{F}^{2}(1+\rho^{2})$$

 M_F : Fermi matrix element M_{GT} : Gamow-Teller matrix element $\rho: GT/F$ mixing ratio

• Corrected *Ft*-values

$$\mathcal{F}t^{\text{mirror}}\left[1 + f_A \rho^2 / f_V\right] = 2\mathcal{F}t^{0^+ \to 0^+}$$

Same inputs (exp/theo) as $0^+ \rightarrow 0^+$ transitions

Additional term due to mixing

→ Can extract the vector strength, like with Fermi transitions

Michigan State University National Science Foundation

Review of prior work (1/3)

Volume 58B, number 3

PHYSICS LETTERS

15 September 1975

DOES THE CABIBBO ANGLE SOMETIMES VANISH IN NUCLEAR β -DECAY?

J.C. HARDY and I.S. TOWNER

Atomic energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada, KOJ IJO

Table 1 Summary of Data.			
	n	¹⁹ Ne	³⁵ Ar
sin $\theta_{\rm V}$	0.27 ± 0.05	0.230 ± 0.014	0.03 ± 0.09 🗙

- 3 mirror transitions (including neutron decay)
- Indicates a CVC breaking in <u>nuclear</u> mirror decays
- Experimental error in ³⁵Ar decay lead to wrong conclusions

Review of prior work (2/3)

S.J. Freedman (1944-2012)

NSF proposal (circa ~1996) 4. Investigation of the β-Decay of Hirror Nuclei

S.J. Freedman and J. Napolitano (Argonne National Laboratory), with M.A. Miller, P.A. Voytas, W. Haeberli, and P.A. Quin

Mirror nuclei provide us with several examples of weak transitions within isospin-1/2 multiplets. These transitions are particlularily simple and even the subtle contributions of induced currents are easy to classify. The size of the vector current anomaly (weak magnetism) is directly related to a combination of initial and final nucleus ground state magnetic moments and effects of possible "second class" currents can be isolated. The dominant contributions from allowed terms are the usual vector and axial vector strengths C_VM_F and C_AM_{GT} , respectively. Because of the simple isospin

We propose to increase the number of experimental determinations of C_V by measuring the β asymmetry in several mirror nuclei, including ³⁵Ar. We will employ the method of producing stopped polarized nuclei with polarized beams. This method does not allow the nuclear polarization to be measured directly so we are limited to cases in which there are adequately strong, pure Gamow-Teller decay branches to excited states. In Gamow-Teller decays the β asymmetry parameter is easily calculated and the associated β asymmetry can be measured by counting deexcitation γ -rays in coincidence.

• Produced results in ²⁹P and ³⁵Ar decays (U. Wisconsin, PSI)

Review of prior work (3/3)

PHYSICAL REVIEW C 78, 055501 (2008)

$\mathcal{F}t$ values of the T = 1/2 mirror β transitions

N. Severijns,^{1,*} M. Tandecki,¹ T. Phalet,¹ and I. S. Towner² ¹K. U. Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven, Belgium ²Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA (Received 15 July 2008; published 5 November 2008)

• Survey of available experimental data (half-lives, branching ratios, Q_{EC} -values)

• Provided theoretical corrections ($\delta_C^V - \delta_{NS}^V$)which are crucial for the determination of $\mathcal{F}t$ values

• No extraction of V_{ud} !

Extraction of V_{ud} (2009)

$$\mathcal{F}t_0 = \mathcal{F}t^{\text{mirror}} \left[1 + f_A \rho^2 / f_V \right]$$

• Use mixing ratios, *ρ*, extracted from experiments !!!

• Test of CVC in mirror transitions.

O. N-C and N. Severijns, PRL102 (2009) 142302

• Extract V_{ud}

$$V_{ud}^2 = \frac{K}{\overline{\mathcal{F}t_0}G_F^2(1+\Delta_R^V)}$$

$$V_{ud}^{\text{mirror}} = 0.9719(17)$$

Error budget in mirror transitions - 2011

- Dominated by the uncertainty on GT/F mixing ratio, ho
- Motivated also new measurements of spectroscopic quantities

Some new spectroscopy results

Parent	Property	Reference, Group(s)/Lab
¹¹ C	Q_{EC}	Gulyuz et al. PRL 116 (2016) 012501
¹⁷ F	<i>t</i> _{1/2}	Grinyer et al. PRC 92 (2015) 045503 Brodeur et al. PRC 93 (2016) 025503
¹⁹ Ne	t _{1/2}	TRIUMF; TUNL@KVI; GANIL
²¹ Na	$t_{1/2}$	Grinyer et al. PRC 91 (2015) 032401(R)
	$t_{1/2}$	Finlay et al. PRC 96 (2017) 025501
	$\dot{Q_{EC}}$	Eibach et al. PRC 92 (2015)045502
²⁵ Al	Q_{EC}	Canete et al. EPJA 52 (2016) 124
	<i>t</i> _{1/2}	Long et al. PRC 96 (2017) 015502
²⁹ P	$t_{1/2}$	CENBG@JYFL
	Q_{EC}	Eibach et al. PRC 92 (2015)045502
³¹ S	<i>t</i> _{1/2}	Bacquias et al. EPJA 48 (2012) 155
	Q_{EC}	Kankainen et al. PRC 82 (2010) 052501(R)
³³ Cl	t _{1/2}	Grinyer et al. PRC 92 (2015) 045503
³⁷ K	$t_{1/2}$	Shidling et al. PRC 90 (2014) 032501(R)
³⁹ Ca	$t_{1/2}$	Blank et al. EPJA 44 (2010) 363

Michigan State University National Science Foundation • New compilation of *Ft* values under way [Severijns priv. com.]

Example: ¹⁹Ne half-life

TRIUMF: Triambak et al. PRL **109** (2012) 042301 GANIL-1: Ujic et al. PRL **110** (2013) 032501 TUNL/KVI: Broussard et al. PRL **112** (2014) 212301 GANIL-2: Fontbonne et al. arXiv:1709.09415

• Measurement has now reached a precision of 1.2×10^{-4}

Michigan State University National Science Foundation

Theoretical corrections (shell model)

 $\delta_{\rm C}$ - $\delta_{\rm NS}$ (%) 2.0 T=1/2 $T_{z} = -1$ 1.5 1.0 0.5 0.0 30 40 50 60 80 0 10 20 70 Mass number (A) of parent nucleus

 $T{=}1/2$: N. Severijns et al., PRC **78** (2008) 055501 $T_z=-1$ and $T_z=0$: J. Hardy, I.S. Towner, PRC **91** (2015) 025501

- Corrections for $T_z = 0$ are systematically smaller than for $T_z = -1$.
- No systematic difference observed for mirror transitions:
 ¹¹C is twice larger than ¹⁰C
 ¹⁵O is twice smaller than ¹⁴O.

• Mirror transitions extend the range of nuclei to test theoretical corrections.

Mixing ratio and correlation coefficients

$$\mathcal{F}t_0 = \mathcal{F}t^{\text{mirror}} \left[1 + f_A \rho^2 / f_V \right]$$

- \bullet The most critical parameter: ρ
- *A* and *B* can determine ρ
- *a* can determine $|\rho|$

Michigan State University National Science Foundation

Measuring principle with LPC-Trap @ GANIL

Michigan State University National Science Foundation

Measurements of "a" with LPC-trap @ GANIL

- Continuous injection of bunches into the Paul trap.
- •Measure energy and position of β particles (DSSSD and PVT).
- Measure TOF and position of recoil ions (over-determined kinematics).
- Continuous extraction and monitoring of remaining ions for each filling.
- "Free flight" ion recoil spectrometer enables to separate charge states.

Results from LPC-trap

- Determine charge state distributions from shake-off (SO) following β decay.
- $^{35}\text{Ar}^+ \rightarrow ^{35}\text{Cl}^0 + e^+ + \nu_e$
- Theoretical calculations of SO reproduce results accurately.

X. Fabian et al. submitted to PRA

• Theoretical calculations do not reproduce results.

Michigan State University National Science Foundation

•Analysis of "a" under way

[Flechard priv. com.]

Solvay Workshop, Brussels Nov. 29 - Dec. 1, 2017

Measurements of "A" in ³⁷K decay @ TRIUMF

• TRINAT detection chamber

B.B. Fenker et al. arXiv:1706.00414

 $A_{\beta} = -0.5707 (18)$ $A_{\beta}^{SM} = -0.5706 (7)$

- Measure the degree of nuclear polarization by probing the atoms with a pulsed laser and detecting photo-ions with MCP.
- 0.1% precision of nuclear polarization!!!

Current status

(a factor of 6.7 less precise than Fermi transitions)

Michigan State University National Science Foundation

Summary

• Nuclear mirror transitions have open a new window for the determination of V_{ud} .

• This extension requires a solid data set and has motivated numerous experiments in spectroscopy and correlation measurements.

• The uncertainties of GT/F mixing ratios will remain (for a while) the dominant source of uncertainty.

• Precision correlation measurements with ion and atom traps and with polarized low energy beams are crucial to this end.

