Neutrinoless Double Beta Decay and new Physics

Manfred Lindner

A Solvay workshop in Brussels, November 29th - December 1st 2017

ULB, Campus Plaine - Solvay Room

Adding Neutrino Masses to the SM

Simplest and suggestive possibility: add 3 right handed singlets (1_L)

Other Possibilities

<u>Add scalar triplets</u> (3_{I}) <u>or add fermionic</u> (1_{I}) <u>or</u> (3_{I})

Both v_R and new singlets / triplets: \rightarrow see-saw type II, III $m_v = M_I - m_D M_B^{-1} m_D^T$

Higher dimensional operators: d=5, ...

Radiative neutrino mass generation

Add: more neutrinos, SUSY, extra dimensions, ...

→ huge number of papers on neutrino masses...
 ... but we know only two ∆m²... (plus mass & unitarity bounds)

→ neutrino masses can/may solve two of the SM problems:

- leptogenesis as explanation of BAU (both Majorana and Dirac)
- keV sterile neutrinos as excellent warm dark matter candidate

even for v_R only \rightarrow BSM physics in many cases connections to LFV, LHC, DM

Double Beta Decay

If neutrinos have Majorana masses → Lepton Number Violation → Neutrinoless Double Beta Decay

BUT: Be careful about the inverted reasoning!

Double **B-Decay & Mass Parabolas**

⁷⁶Ge: Only double β decay \rightarrow SM: 2v+2e⁻ *OR* BSM: 0v+2e⁻ Further 0vββ isotopes... In addition: isotopic composition, backgrounds, costs, NMEs, ...

The Standard Picture of Double Beta Decay

m_{ee}: The Effective Neutrino Mass

$$m_{ee} = |m_{ee}^{(1)}| + |m_{ee}^{(2)}| \cdot e^{i\Phi_2} + |m_{ee}^{(3)}| \cdot e^{i\Phi_3}$$

$$\begin{aligned} |m_{ee}^{(1)}| &= |U_{e1}|^2 m_1 \\ |m_{ee}^{(2)}| &= |U_{e2}|^2 \sqrt{m_1^2 + \Delta m_{21}^2} \\ |m_{ee}^{(3)}| &= |U_{e3}|^2 \sqrt{m_1^2 + \Delta m_{31}^2} \end{aligned}$$

Im $|m_{ee}^{(3)}| \cdot e^{i\Phi_3} \qquad |m_{ee}^{(2)}| \cdot e^{i\Phi_2}$ m_{ee} $|m_{ee}^{(1)}| \qquad Re$

Comments:

- cosmology: m < 0.2-0.3 eV
- $0\nu\beta\beta$: $m_{ee} < 0.1-0.3 \text{ eV}$
- NMEs → unavoidable theory errors
- known Δm^2 from oscillations
 - ➔ yellow/blue areas
 - improved sensitivity is very promising!
- warnings:
 - assumes no *other* ∆L=2 physics
 - assumes no sterile neutrinos, ...

More general: L Violating Processes

Other Double Beta Decay Processes <u>Standard Model:</u>

→ 2 electrons + 2 neutrinos $2\nu\beta\beta$

Majorana v-masses or other $\Delta L=2$ physics: $\rightarrow 2$ electrons

Interference of $\Delta L=2$ Operators

$$\left(T_{1/2}^{0
u}
ight)^{-1} = \left(rac{|m_{0
uetaeta}|}{m_e}
ight)^2 |\mathcal{M}^{0
u}|^2 G^{0
u}.$$

Usually

the transferred states and

$$\begin{split} \left(T_{1/2}^{0\nu}\right)^{-1} &= |m_{0\nu\beta\beta}\mathcal{M}^{0\nu} + \epsilon m_e \mathcal{M}^{\epsilon}|^2 \frac{G^{\text{int}}}{m_e^2} \\ &= |(m_{0\nu\beta\beta} + \epsilon m_e \mathcal{M}^{\epsilon} (\mathcal{M}^{0\nu})^{-1}) \mathcal{M}^{0\nu}|^2 \frac{G^{\text{int}}}{m_e^2} \\ &= |m_{0\nu\beta\beta}^{\text{int}}|^2 |\mathcal{M}^{0\nu}|^2 \frac{G^{\text{int}}}{m_e^2} \,, \end{split}$$

 $\begin{array}{ll} G^{\mathrm{int}} &= \mathrm{overall \ phase \ space \ factor} \\ \epsilon m_e \mathcal{M}^{\epsilon} & \leftarrow \rightarrow \mathrm{determined \ by \ parameters \ of \ new \ physics} \\ m_{0\nu\beta\beta}^{\mathrm{int}} \equiv m_{0\nu\beta\beta} + \epsilon m_e \mathcal{M}^{\epsilon} (\mathcal{M}^{0\nu})^{-1} \equiv m_{0\nu\beta\beta} + m_{\epsilon} \\ \mathbf{m}_{\epsilon} \simeq (\Lambda_{\mathrm{new}})^{-5} \quad \mathbf{m}_{0\nu\beta\beta} = 1 \ \mathrm{eV} \bigstar \Lambda_{\mathrm{new}} \simeq \mathrm{TeV} \end{array}$

Extreme Cases

m_{ee} from Majorana neutrinos only and no other $\Delta L{=}2$ physics

 m_{ϵ} from other $\Delta L=2$ physics with Dirac neutrino masses

and anything in-between

extract Majorana phases

→ sensitivity to TeV

Does 0vββ Decay imply Majorana Masses?

<u>Schechter-Valle Theorem</u> → is misleading

Any $\Delta L=2$ operator which mediates the decay induces via loops Majorana mass terms \rightarrow unavoidable: Majorana neutrinos...!?

$$0\nu\beta\beta$$
 some $\Delta L=2$ operator

Dürr, ML, Merle

4 loops \rightarrow enforce $\delta m_v = 10^{-25} \text{ eV} \rightarrow \text{very tiny}$ (academic interest) \rightarrow cannot explain observed v masses and splitting's

Extreme possibility:

- $0\nu\beta\beta$ = L violation = other BSM physics
- neutrino masses = Dirac (plus very tiny Majorana corrections)
- + Dirac leptogenesis, + ...

The experimental Task

- finite energy resolution
 - \rightarrow background from the tail of $2\nu\beta\beta$
- extreme low background → does not mean no background → lines...
 - \rightarrow need a method to ensure that it is $0\nu\beta\beta$ and not some background
 - 1) two different isotopes
 - 2) isotopic fingerprint

Sensitivity & Background (for a Majorana Mass)

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 m_{\beta\beta}^2$$

$$m_{\beta\beta} = \left| \sum_{i} U_{ei}^2 m_i \right|$$
without background
$$N = \log 2 \cdot \frac{N_A}{W} \cdot \varepsilon \cdot \frac{M \cdot t}{T_{1/2}^{0\nu}}$$

$$N_A = \text{Avogadro's number}$$

$$W = \text{atomic weight of isotope}$$

$$\varepsilon = \text{signal detection efficiency}$$

$$M = \text{isotope mass}$$

$$t = \text{dat taking time}$$

$$m_{\beta\beta} = K_1 \sqrt{\frac{N}{\varepsilon M t}}$$
with background
$$N' = N + N_{background}$$

$$N' = N + N_{background}$$

$$M_{\beta\beta} = K_2 \sqrt{1/\varepsilon} \left(\frac{c \Delta E}{Mt}\right)^{1/4}$$

$$C = \text{cts/keV/kg/yr}; \Delta E = \text{ROI}$$

Which Isotope?

- Large detector mass

- ← → natural abundance or enrichment (cost, time)
 ← → detection technology
 ← → costs, feasibility, ...
- Radio-purity
 - $\begin{array}{l} \leftarrow \rightarrow \text{ ultra clean } 0 \lor \beta \beta \text{ source} \\ \text{ and instrumentation} \\ \leftarrow \rightarrow \text{ high } Q_{\beta\beta} \leftarrow \rightarrow \text{ less bgd.} \end{array}$

- Good energy resolution

 \leftarrow > avoid known and unknown backgrounds in ROI: $Q_{\beta\beta} \pm \Delta E$

- Uncertainties in nuclear matrix elements + energy resolution

→ Germanium is a very good choice

→ use two different isotopes to confirm a signal ...

Consistency Test with one Isotope

- independent of backgrounds!

Duerr, ML, Zuber

The Fight against Background

Extreme rare reaction (T>10²⁵ years >> age of Universe) Magnitude 1 decay/kg/year Environment ~ 30Bq/kg = 10⁹/kg/year → 3000/person/second

- → avoid single β decay
 → suitable isotopes
 → avoiding / suppression of environmental radioactivity
 - in the $0\nu\beta\beta$ detector material
 - → ultra clean (production, handling)
 - → puls form analysis (identify & reject background)
 - in the detector parts (e.g. holders, signal amplifiers)
 - \rightarrow lowest amount of material
 - → ultra pure materials (selection; environmnt = O(100Bq/kg) ← → $\mu Bq/kg$)
 - → extremely helpful: ⁷⁶Ge source = detector (a big Ge diode)
 - in the environment
 - → ultra clean room (clean room, ...)
 - → avoid Radon (decay of U, Th in the environment → 222 Rn-gas)
 - → avoid cosmogenic activation (new isotopes → go underground)
 - \rightarrow avoid cosmogenic myons, neutrons \rightarrow go underground

Experimental Realizations

0vββ decay is important!

→low background expertise!
 →long history and diverse plans for the future

Important mile stone: Heidelberg-Moskau-Experiment (H.V. Klador-Kleingrothaus MPIK) - for many years best limts - signal?

→ GERDA → important result

Protection against Cosmogenic Radiation

Unterground laboratory → Gran Sasso (Italy)

A very special place to work...

The GERDA Detector (original idea by G. Heusser, MPIK)

MPIK Material γ-Screening Facilities

- Different screening stations@MPIK underground lab: BRUNO, CORRADO, ... (1mBq/kg)
- 4 GEMPIs
 @LNGS (10µBq/kg)
- New: GIOVE
 @MPIK (50µBq/kg)

 extensive task for GERDA and other experiments (XENON, ...)

Rn Screening Facilities

Gas counting systems @LNGS and @MPIK

²²²Rn emanation technique

- sensitivity = few atoms/probe
- large samples $\leftarrow \rightarrow$ absolute sensitivity
- non-trivial; not commonly available; routine @MPIK
- established numbers:

Nylon (Borexino) < 1µBq/m² Copper (Gerda): 2µBq/m² Stainless steel (Borexino): 5µBq/m² Titanium: (100 ± 30) µBq/m²

New: Auto-Ema - automatized Rn screening facility @MPIK → many samples

04May05 19Jan06 07Oct06 24Jun07 10Mar08 26Nov08 13Aug09 01May10 16Jan11 03Oct11 20Jun1:

GERDA Detector Types

0vββ signature:

point-like energy deposition in detector bulk volume
sharp energy peak at 2039 keV (FWHM = 3-4 keV)

- 1) Big Ge-diodes \rightarrow HV \rightarrow electrical signal
- 2) re-processed HdM, IGEX and GTF detectors p-type semi-coaxial
- 3) new p-type BEGe (Broad Energy Ge) detectors
- n⁺ conductive Li layer, separated by a grove from the boron implanted p⁺ contact
- operated as ``diode": events → pulses
- SSE/MSE (single/multi site event) discrimination

Pulse Shape Discrimination

- **Single Site Events (SSE)**
- Multi Site Events (MSE)
- $0\nu\beta\beta$ -decays \rightarrow localized energy deposition \rightarrow SSE
- Compton scattering evt. → background like MSE
- surface events \rightarrow SSE (a) surface
- SSE by γ 's look like events (cannot be rejected)
- β particles enter via n⁺ surface \rightarrow slow pulses
- α 's (a) p⁺ contact \rightarrow comparatively high signal

28

Backgrounds

Background sources:

- α decays on the p⁺ surface
- β decay of ⁴²K on the surface or close to the detector from ⁴²Ar (10x more than expected)
- β decay of ⁶⁰Co inside detectors
- γ from ²⁰⁸TI, ²¹⁴Bi and from various setup components

Generic phase I background reduction

- use cleanest possible material
- prevent ⁴²K ions from drifting to detectors using minishrouds
- cut detector coincidences
- pulse shape analysis
- → Background model \leftarrow → from screening
- → Measured background away from $Q_{\beta\beta}$ consistent with expectation from measurement → flat

Phase I: The Region of Interest

expected bg from interpolation:

5.1 events w/o PSD2.5 events with PSD

Phase I: The Region of Interest

Profile Likelihood Fit to PSD Spectrum

profile likelihood fit = hypothesis test: is there a line at $Q\beta\beta$

signal = a*flat background + b*line -> extract coefficients

→ best fit: $N^{0\nu} = 0$; upper limit: $N^{0\nu} < 3.5$ (90%CL)

→ half life limit $T_{1/2}(0v\beta\beta) > 2.1 * 10^{25}$ yr (90% C.L.)

GERDA Phase II

Improvement for Phase II:

- more new BEGe detectors
 ~factor 2 in ⁷⁶Ge mass
- active veto (light instrumentation)
 - → even more background suppresion

LAr Scintillation light Veto

Hybrid veto instrumentation:

- 16 PMTs (9 top / 7 btm)
- 800 m fibers coated with WLS + 90 SiPMs
- nylon mini-shroud around each string coated with WLS

Parameters optimized for each channel:

- \sim 0.5 PE threshold
- ullet $\sim 5-6\,\mu{
 m s}$ anticoincidence window

Data Taking 2015-2016

- Dec 2015 May 2016
- 82% average duty cycle
- exposure used for analysis:

5.8 kg·yr for enriched BEGe:

5.0 kg·yr for enriched coax:

- weekly calibration runs with ²²⁸Th
- blinding window $Q_{\beta\beta} \pm 25 \text{ keV}$

1000

1500

2000

counts / keV

10⁶

10⁵

10⁴

10³

10²

10

Background Suppression *a* **BEGe**

Results

- GERDA PhaseII is running stable
- ► 3-4 keV energy resolution at Q_{ββ}
- ▶ lowest background in ROI ever achieved: 35⁺²¹₋₁₅ · 10⁻⁴ cts/(keV · kg · yr) for Coax 7⁺¹¹₋₅ · 10⁻⁴ cts/(keV · kg · yr) for BEGe
- ► combined Phase I+II sensitivity: $T_{1/2}^{0\nu} > 4.0 \cdot 10^{25} \text{ yr } (90\% \text{ C.L.})^*$
- ▶ blind analysis, no 0νββ signal: T^{0ν}_{1/2} > 5.2 · 10²⁵ yr (90% C.L.)* |m_{ee}| < [160,260] meV (90% C.L.)* (* preliminary, ε^{PSD}_{coax} to be finalized)

GERDA Phase II is the high-resolution and background-free experiment!

[see poster on next gen ⁷⁶Ge exp: P4.057]

Conclusion / Outlook / Discussion

- The Majorana nature of neutrinos is a very important question
- Now: GERDA, EXO, KamLAND-Zen, CUORE
- Other projects ...
- Upscaling:
 - 200kg in GERDA → LEGEND200
 - LEGEND \rightarrow 1t
 - nEXO → 5t enriched Xe136
 - DARWIN \rightarrow 50t natural Xe (DM+0v $\beta\beta$ search)
- **Expectations:**
 - global fits tend towards NH
 - cosmology tends towards NH
 - → we need new ideas to reach the NH