Revisiting the nuclear β decay input in the reactor anomaly

Leendert Hayen Solvay Workshop, Brussels, December 1st 2017

IKS, KU Leuven, Belgium

Introduction

State of the art

Planned improvements

Summary

Introduction

Where is the anomaly?

Antineutrino's from β^- decay of reactor fission fragments

```
Where is the anomaly? Antineutrino's from \beta^- decay of reactor fission fragments
```

What goes wrong? Measured $\# \ \bar{\nu}_e <$ predicted from β decay

```
Where is the anomaly? Antineutrino's from \beta^- decay of reactor fission fragments
```

What goes wrong? Measured $\# \bar{\nu}_e <$ predicted from β decay

How should we interpret this? Prediction error (mean, σ) or sterile neutrino's, something else

```
Where is the anomaly? Antineutrino's from \beta^- decay of reactor fission fragments
```

What goes wrong? Measured $\# \bar{\nu}_e <$ predicted from β decay

How should we interpret this? Prediction error (mean, σ) or sterile neutrino's, something else

When new physics lurks, look out for quirks!

Antineutrino origin

Fission fragments from ²³⁵U, ²³⁸U, ²³⁹Pu and ²⁴¹Pu have many β^- branches, but can only measure cumulative spectrum.

Conversion of all β branches is **tremendous** challenge A. A. Sonzogni *et al.*, PRC **91** (2015) 011301(R)

Deficiency and particle physics proposal

Current deficiency in neutrino count rate at 94% (2-3 σ)

Very exciting, but...it is real?

Deficiency and particle physics proposal

Current deficiency in neutrino count rate at 94% (2-3 σ)

Very exciting, but...it is real?

Understanding of all corrections & nuclear structure is crucial!

An et al. (Daya Bay Collab.), PRL 118 (2017) 251801 & J. Kopp et al., JHEP 05

Active participation of QED, QCD & WI \rightarrow Complicated system

Weak Hamiltonian is modified

- 1. Emitted β particle immersed in Coulomb field: radiative corrections
- 2. QCD adds extra terms in weak vertex: induced currents

Active participation of QED, QCD & WI \rightarrow Complicated system

Weak Hamiltonian is modified

- 1. Emitted β particle immersed in Coulomb field: radiative corrections
- 2. QCD adds extra terms in weak vertex: induced currents

Relevant to this talk:

$$V_{\mu}(q^2)
ightarrow i \langle \bar{u}_{
ho} | g_V \gamma_{\mu} - rac{\kappa_{
ho} - \kappa_n}{2M} \sigma_{\mu
u} q^{
u} | u_n
angle$$

'Weak magnetism'

Recently accomplished: Fully analytical description (hydra)

$$N(W)dW = \frac{G_V^2 V_{ud}^2}{2\pi^3} F_0(Z, W) L_0(Z, W) U(Z, W) R_N(W, W_0, M)$$

× $Q(Z, W, M) R(W, W_0) S(Z, W) X(Z, W) r(Z, W)$
× $C(Z, W) D_C(Z, W, \beta_2) D_{FS}(Z, W, \beta_2)$
× $pW(W_0 - W)^2 dW$

Analytical beta spectrum shape

Recently accomplished: Fully analytical description (hydra)

$$N(W)dW = \frac{G_V^2 V_{ud}^2}{2\pi^3} F_0(Z, W) L_0(Z, W) U(Z, W) R_N(W, W_0, M)$$

$$\times Q(Z, W, M) R(W, W_0) S(Z, W) X(Z, W) r(Z, W)$$

$$\times C(Z, W) D_C(Z, W, \beta_2) D_{FS}(Z, W, \beta_2))$$

$$\times pW(W_0 - W)^2 dW$$

Main corrections and improvements:

Atomic effects: Screening, exchange, atomic mismatch, molecular effects

Nuclear effects: Spatial variation of wave functions, nuclear structure & deformation

L. H. et al., Accepted for Rev. Mod. Phys.; arXiv: 1709.07530

Performance check

Initial test for $0^+ \rightarrow 0^+$ superallowed decays, minor influence from nuclear structure.

Comparison of *f* values to best results on the market, agrees nicely.

Performance check

Initial test for $0^+ \rightarrow 0^+$ superallowed decays, minor influence from nuclear structure.

Comparison of *f* values to best results on the market, agrees nicely.

Largest deviations are for **extremely** deformed

isotopes.

I. Towner & Hardy, PRC **91** (2015) 025501

Performance check

Comparison to Towner *et al.* mirror calculations, sensititive to 3 matrix elements

Excellent agreement within uncertainties I. Towner & Hardy, PRC **91** (2015) 025501

Weak magnetism in T = 1/2 mirrors

Main nuclear structure influence in allowed decays

Oblate deformation for 33 Cl, 35 Ar changes sign & magnitude! Level mixing for high Z, N is non-trivial

β participant sketch

Nuclear β decay is complicated

β participant sketch

Nuclear β decay is complicated

Both greatly influence the spectrum shape!

β participant sketch

Nuclear β decay is complicated

Both greatly influence the spectrum shape!

Additional lower order effects: Atomic, electrostatic, kinematic...

Möller et al., ADNDT 109-110 (2016) 1; L.H. et al., arXiv: 1709.07530

Reactor bump

Clearly something is not well understood, possibilities are plentiful Hayes & Vogel, ARNPS **66** (2016) 219

State of the art

Approaches split up in 2:

1. Huber method: virtual β branch fits

State of the art

Approaches split up in 2:

- 1. Huber method: virtual β branch fits
- Summation method: Build from databases & extrapolate a la #1

Extrapolation & Virtual branches

How to construct these fictitious β branches?

Parametrised $\overline{Z}(E_0)$ fit with simple polynomial

P. Huber, PRC 84 (2011) 024617

Typical procedure

- 1. Make grid for E_0 in [2, 12] MeV
- 2. Every gridpoint $E_{0,i}$, choose $Z(E_{0,i})$
- 3. Assume allowed shape, extrapolate average nuclear matrix elements
- 4. Fit VB intensities to cumulative exp. spectrum

$$S(E_e) = \sum_i c_i S(E_e, \bar{Z}(E_{0,i}), E_{0,i})$$

5. Invert spectra using $E_{\nu} = E_0 - E_e$

Huber (conversion) method has many issues:

- Estimated average *b*/*Ac* from spherical mirrors, but highly transition and deformation dependent
- Incorrectly estimates $(\alpha Z)^{n>1}$ effects, RNA $(\langle Z \rangle^{n>1}) \neq \langle RNA(Z^{N>1}) \rangle$!
- Fixed endpoints on grid
- 239 Pu/ 235 U is wrong
- Only allowed transitions (dominant $0^+ \leftrightarrow 0^-$ transitions)
- Quenching of g_A is absent
- . . .

Predictions are dubious

An *et al.* (Daya Bay Collab.), PRL 118 (2017) 251801 & Hayes *et al.*, arXiv:1707.07728

Planned improvements

Central idea is more realistic uncertainty by assessing 3 main sources of error

- Fission yields
- Proper (forbidden) spectral shapes
- Database extrapolation

Central idea is more realistic uncertainty by assessing 3 main sources of error

- Fission yields
- Proper (forbidden) spectral shapes
- Database extrapolation

Collaboration with SCK-CEN for FY uncertainties, Jyvaskyla for forbidden shape factors

Forbidden shape factors

Out of thousands of β^- decays, many dominant are forbidden

Nuclide	$J^{\pi}_{gs} ightarrow J^{\pi}_{gs}$	GS β_2
⁹⁶ Y	$0^- ightarrow 0^+$	0.308
⁹² Rb	$0^- ightarrow 0^+$	0.240
¹⁰⁰ Nb	$1^+ ightarrow 0^+$	0.412
¹³⁵ Te	$(7/2-) \rightarrow 7/2^+$	-0.011
¹⁴² Cs	$0^- ightarrow 0^+$	0.141
¹⁴⁰ Cs	$1^- ightarrow 0^+$	0.097
⁹⁰ Rb	$0^- ightarrow 0^+$	-0.105
⁹⁵ Sr	$1/2^+ ightarrow 1/2^-$	0.308
⁸⁸ Rb	$2^- ightarrow 0^+$	-0.073

Sonzogni et al., PRC 91 (2015) 011301(R)

Forbidden shape factors

Differences can be dramatic

Additional uncertainty from g_A and γ_5 renormalization

Results by Joel Kostensalo (Jyvaskyla)

Database contains much more information to use

Trivial extension to improve $(\alpha Z)^2$ behaviour, fixed weights

Database contains much more information to use

Trivial extension to improve $(\alpha Z)^2$ behaviour, fixed weights

Employ Machine Learning clustering algorithms to find better patterns

Nuclear β decays live in high-dimensional vector spaces

- *Z*, *A*
- Branching Ratio, E_0 , daughter excitation
- $\Delta J^{\Delta \pi}$ (forbiddenness, unique)
- Initial and final deformation
- ...

Nuclear β decays live in high-dimensional vector spaces

- *Z*, *A*
- Branching Ratio, E_0 , daughter excitation
- $\Delta J^{\Delta \pi}$ (forbiddenness, unique)
- Initial and final deformation
- ...

Clusters in high dimensions are smeared in 2D projections

Data visualization

22

Data visualization - Clustering

Clustering visualisation

Use dimensional reduction (t-SNE) to visualise results

Clear clusters, intercluster distance irrelevant here

Intercluster comparison

Example comparison for 2 clusters

Large differences visible for simple histograms!

Outliers

Check how many fall out of clusters

Almost all points belong firmly to a cluster!

How to combine these results?

Instead of a single $Z(E_0)$ fit, use Multidimensional Cluster Markov Chain Monte Carlo (MC³) How to combine these results?

Instead of a single $Z(E_0)$ fit, use Multidimensional Cluster Markov Chain Monte Carlo (MC³)

Build a distribution of anomaly \rightarrow better uncertainty estimate

Procedure:

For each E_0 bin, for each cluster, build sampling distribution

Procedure:

For each E_0 bin, for each cluster, build sampling distribution

Bayes' theorem:

$$\mathsf{P}(heta|d) = rac{\mathsf{P}(heta)\mathsf{P}(d| heta)}{\mathsf{P}(d)}$$

Procedure:

For each E_0 bin, for each cluster, build sampling distribution

Bayes' theorem:

$$P(heta|d) = rac{P(heta)P(d| heta)}{P(d)}$$

Prior $(P(\theta))$: intrinsic probability for a β branch, fission yield × BR Likelihood $(P(d|\theta))$: probability for point to belong to cluster

Continue with affine-invariant MCMC (shape-insensitive)

Weighted visualization

Virtual β branch creation

Electron Schreckenbach fits are typically well below 1% with limited # branches

Statistical Conditions

After

conversion to $\bar{\nu}_e$ spectrum, obtain ratio R_i (i = 5, 8, 9, 1)

Statistical Conditions

After

conversion to $\bar{\nu}_e$ spectrum, obtain ratio R_i (i = 5, 8, 9, 1)

Traditionally use fit results & uncertainty from χ^2 minimization

Ratio vs Mueller for Pu239 1.4 1.3 1.2 Ratio Mueller/conversion 1.1 1.0 0.9 0.8 0.7 0.6 3000 8000 4000 5000 6000 7000 Antineutrino enerav

Only

correct when underlying pdf

- Symmetric
- Unimodal
- Gaussian

Proof of concept results

Symmetric

Proof of concept results

Unimodal

Proof of concept results

Gaussian

Results are very much preliminary, prepare salt

However, interesting trends appear to

- violate previously used statistical inference methods
- increase uncertainties significantly

Results are very much **preliminary**, prepare salt

However, interesting trends appear to

- violate previously used statistical inference methods
- increase uncertainties significantly

Still simplest case, haven't even used cluster information, or nuclear structure!

Main allowed correction matrix element

$$\frac{b}{Ac} = \frac{1}{g_A} \left[g_M + g_V \frac{M_L}{M_{GT}} \right]$$

From low-Z mirror systems, $b/Ac \sim$ 5, however

• For $l \pm 1/2 \rightarrow l \pm 1/2$ transitions, $b/Ac \propto \pm l$

Main allowed correction matrix element

$$rac{b}{Ac} = rac{1}{g_A} \left[g_M + g_V rac{M_L}{M_{GT}}
ight]$$

From low-Z mirror systems, $b/Ac \sim$ 5, however

- For $l\pm 1/2 \rightarrow l\pm 1/2$ transitions, $b/Ac \propto \pm l$
- $l \pm 1/2 \rightarrow l \mp 1/2 = \text{constant}$, but deformation mixes oscillator shells

Main allowed correction matrix element

$$rac{b}{Ac} = rac{1}{g_A} \left[g_M + g_V rac{M_L}{M_{GT}}
ight]$$

From low-Z mirror systems, $b/Ac \sim$ 5, however

- For ${\it I}\pm 1/2 \rightarrow {\it I}\pm 1/2$ transitions, ${\it b}/{\it Ac} \propto \pm {\it I}$
- $l \pm 1/2 \rightarrow l \mp 1/2 = \text{constant}$, but deformation mixes oscillator shells
- Strong g_A quenching in heavy systems

Pretty easily see this going upward, subject of further study

Doubling of weak magnetism produces shift \sim anomaly, however prepare salt!

Summary

Current anomaly analysis has shaky foundation

Current anomaly analysis has shaky foundation

Triple-pronged approach to better assess (mean, σ)

Current anomaly analysis has shaky foundation

Triple-pronged approach to better assess (mean, σ)

Nuclear β decays live in high-dimensional clusters, use of Machine Learning to investigate