

SOLVAY WORKSHOP "Beyond the Standard model with Neutrinos and Nuclear Physics"

Brussels, November 29th - December 1st, 2017

Instable Particles as Probes for New Physics – Searches for APV and EDMs

Klaus Jungmann

Van Swinderen Institute, University of Groningen

Searches for Electric Dipole Moments/Parity Violation

- Testing the Standard Model with instable Molecules, Atoms and Particles
- Discrete Symmetries and their Conservation / Violation
- In general : Few Valence Electron Systems -Heavy Atoms -Radioactive Species -
- Privileged
 - Advantageous
 - Some Opportunities
- EDM Searches with Enhancement in Atoms, Molecules (& Some Nuclei)
- Perspectives in the Period to Come Due to Technology Advances

Standard Model Tests

Equivalent Approaches

- Standard Model (SM) of particle physics is Best Theory we have
- Still large number of open questions e.g. particle masses, origin of parity violation,

Direct: Searches for New Particles

CERN e.g. LHC

e.g. Discovery of Higgs boson,.. also: Difference Matter-Antimatter ...

groningen VSI

Indirect: High Precision Measurements

Small institutes e.g. VSI ..

e.g. Atomic Parity Violation, EDM searches,

Discrete Symmetries C,P,T,CP,CPT

An EDM Violates P,T

and with CPT also CP

Permanent

Electric Dipole MomentS

→ Electron: clean and ready for New Physics

 \rightarrow Hadrons: depend on θ_{OCD} in Standard Model

Spin of Fundamental Particles

S is the only vector characterizing a non-degenerate quantum state magnetic moment: $\mu_x = 2(1+a_x) \mu_{0x} c^{-1} S$ electric dipole moment: $\vec{d}_x = \eta \mu_{0x} C^{-1} \vec{S}$ magneton: $\mu_{0x} = e\hbar / (2m_x)$

 $\mu_{0x} c^{-1} S = \begin{cases} 9.7 \cdot 10^{-12} e cm & (electron) \\ 4.6 \cdot 10^{-14} e cm & (muon) \\ 5.3 \cdot 10^{-15} e cm & (nucleon) \end{cases}$

Instable Particle EDMs

 > In principle EDM not forbidden in instable states
 → e.g. transition dipoles exist

 ≻ Heavy (therefore instable) atoms have general advantage
 → deformed nuclei

 \rightarrow Z^x enhancement (x typically 2...3)

Instable particles may have detection advantage

- $\rightarrow \beta$ asymmetry
- → are there oscillations in EDMs ? (axions)

An EDM Violates P,T

and with CPT also CP

Possible Sources of EDMs

The numerically best experiment until now-¹⁹⁹Hg @Seattle – Leaves somewhat restricted room for SUSY ...

Lines of attack towards an EDM

Enhancements of particle EDMs

 \Rightarrow go for heavy systems, where Z>>1, e.g. Hg, Xe

 \Rightarrow take advantage of enhancements, e.g. Ra, Rn

 \Rightarrow consider molecules such as YbF, RaF, ...

groningen / VSI

Jan 2014

Doyle, Gabrielse , DeMille

Highlight: ThO electron EDM experiment

 $\mathcal{E}_{\rm ext}$ ~ 1 V/cm enough for ThO

 $\mathcal{E}_{eff} \sim \mathcal{P} \alpha^2 Z^3 e / a_0^2$

due to relativity (P.G.H. Sandars)

 $\mathcal{E}_{\rm eff}$ \cong 80 GV/cm

(depending on theorist)

New limit for e-

d_e < 8.7* 10⁻²⁹ e cm (90% c.l.)

Experiment presently taking further data

Atomic/Molecular Enhancement Factors

for Electron EDM

Particle	Rb	Cs	TI	Fr	Ra
Enhancement	24	125	585	1 150	40 000

Flambaum, Dzuba, 2012

Particle	ThO	BaF	YbF	PbO
Enhancement	10 ⁹	5x10 ⁵	1.6 x 10 ⁶	6 x 10 ⁴

watch out: Saturation

→ different theorists agree, typically at 30% level

Radium Isotopes

²²⁵Ra

extraction from ²²⁹Th source (ANL) Long lived ²²⁹Th source in an oven (VSI)

Other Isotopes

university of groningen

FRIB VSI

Online production at accelerator facilities e.g.

```
TRI\muP@KVI ( flux ~ 10<sup>5</sup>/s) (until 2013)
ISOLDE , CERN ( flux ~ 10<sup>9</sup>/s)
```

		Lifetime	Spin	
	209	4.6(2) s	5/2	
1	211	13(2) s	1/2 🗲	
₩ ₩	212	13.0(2) s		
Jurv	213	2.74(6) m	1/2	
IK	214	2.46(3) s		
				ĺ
IIOII	221	28.2 s	5/2	
ciila	223	11.43(5) d	3/2	
agu	224	3.6319(23) d		
	225	14.9(2) d	1/2 🔶	
SOUL	226	1600 у		
nnc	227	42.2(5) m	3/2	
	229	4.0(2) m	5/2	

ΔN <14

Radium EDMs

Atomic energy level diagram of Ra 7s7p ¹P₁

EDM Enhancement by Nuclear Deformation

L. P. Gaffney et al, Nature 497 ,157 (2013)

If that were true also for odd spin isotopes there'd be a nucleon EDM enhancement by factor of some 200

Need measurements for odd isotopes now !!

(see e.g. Y.K. Khriplovich)

Radium and Barium

Radium

Barium

👸 / university of / VSI

Isotope	Transition	Frequency	Experiment by
		[MHz]	
²²⁶ Ra	${}^{1}S_{0} - {}^{1}P_{1}$	621038489 (15)	This work
²²⁶ Ra	${}^{1}S_{0} - {}^{1}P_{1}$	621038004 (180)	Trimble et al.
²²⁶ Ra	${}^{1}S_{0} - {}^{1}P_{1}$	621041362 (1500)	Rasmussen

B. Santra et al, PRA (R) (2014)

groningen VSI

FIG. 6.6: (Top) Fluorescence from the ${}^{1}S_{0}(F=1/2){}^{-1}P_{1}(F=3/2)$ transition in ${}^{225}Ra$. (Bottom) Saturated absorption line no.51 in ${}^{130}Te_{2}$. The frequency of the transition in radium is 418(1) MHz lower than the reference line #51 (Sec-

Argonne ²²⁵Ra Experiment

R.H. Parker, Phys. Rev. Lett. 114, 233002 (2015)

from M. Bishop, Argonne National Laboratory

Towards a Rn EDM Experiment at TRIUMF T. Chupp and C. Svensson

- Magnitude of EDM ~ Z³
- Radon isotopes possibly octupole deformed
- Rn is predicted to be ~ 600 times more sensitive than ¹⁹⁹Hg

🧱 / univer

To Roughing System

TRIUMF

Radon-EDM Experiment TRIUMF E929 T. Chupp (Michigan) & C. Svensson (Guelph) Funding: NSF, DOE, NRC, NSERC

Produce rare ion radon beam

Collect in cell

Comagnetometer

Measure free precesion (γ anisotropy/β asymmetry)

$$\sigma_d \approx \frac{\hbar}{AET_2\sqrt{N}}$$

^{221/223}Rn EDM projected sensitivity

Facility	Detection	S _d (100 d)	
ISAC	γ anisotropy	2 x 10 ⁻²⁶ e-cm	
ISAC	β asymmetry	1 x 10 ⁻²⁷ e-cm	
FRIB	β asymmetry	2 x 10 ⁻²⁸ e-cm -	—

Courtesy of Tim Chupp

 β_3

Experiment is on the move to U Tokyo / RIKEN

Generic EDM Figure of Merit

Preferred Systems

$$\delta d = \frac{\hbar}{EP\varepsilon\sqrt{\tau TN}} \ \ {\rm / \, enh} \ \ {\rm (enh)} \ \ {\rm (enh)}$$

T measurement timeP polarizationenh enhancement

Particle	Number Particles	Coherence Time	Efficiency	Electric Field	Figure of Merrit
	Ν	τ [s]	3	E [kV/cm]	
¹⁹⁹ Hg	10 ¹⁴	2x10 ²	8x10 -3	10	5x10 ¹³
¹²⁹ Xe	10 ²²	10 ⁴	9x10 -9	3.6	1x10 ¹⁴
ThO	10 ¹¹	1.1x10 -3	2x10 -2	<0.1	2x10 ¹³
YbF	10 ⁵	1.5x10 -3	3x10 -2	10	1x10 ¹²
BaF	10 ¹¹	10 -1	10 -2	10	5x10 ¹³
²²⁵ Ra	10 ³	4x10 ¹	7x10 -5	67	3x10 ⁶

EDM Experiments: Efficiency

B. Santra, L. Willmann (2013)

groningen VSI

BaF

SrF

RaF

Precision Measurements with Molecules

- Heavy diatomic molecules (*SrF, RaF,..*) are suited for precision measurements (parity violation, eEDM)
- Large enhancement due to almost degenerate rotational levels

- Ultracold molecules by a
 traveling wave decelerator and laser cooling
- Benefit from the long interaction time provided by a cold, trapped sample

C. Meinema, J. v/d Berg, S. Hoekstra

Traveling wave decelerator

groningen VSI

C. Meinema, J. v/d Berg, S. Hoekstra

Traveling wave decelerator

5 m of decelerator 10 modules of 50 cm 3360 ring electrodes diameter electrode: 4 mm

SrF Slowed Down

Signal and Simulations

C. Meinema, J. v/d Berg, S. Hoekstra

SrF Slowed Down and Guided

- 8 of 8 amplifiers
- 4 m machine

university of groningen

VSI

The way to go for eEDM below 10⁻²⁹ ecm

S. Hoekstra et al.

BaF eEDM

machine in statu nascendi

S.Hoekstra, A. Borschevsky, K. Jungmann, R.G.E. Timmermans, L. Willmann, H. Bethlem, W. Ubachs et al. (FOM/NWO programme 2016-2022)

eEDM Collaboration Goal: Best EDM Limit on Electron

Time of flight (ms)

S. Hoekstra, S. Mathavan, A. Zapara, Q. Esajas, VSI

- → relatively large effects in some atoms and molecules scaling with Z³ or even stronger
- → one valence electron atoms to extract precise constants
- → more complex systems to study e.g. anapole moments

Atomic Parity Violation (APV)

Physics beyond the SM

 $Q_w = -N+(1-4 \sin^2 \theta_w)Z + rad. corr. + "new physics"$

Extra Z' boson in SO(10) GUTs:

- Additional U(1)' gauge symmetry
- Known Z and W unaffected
- No Z-Z' mixing

$$\delta Q_W \cong (2N+Z) a_e'(\xi) v_d'(\xi) \left| \frac{M_Z^2}{M_{Z'}^2} \right|$$

Londen en Rosner (1986), Marciano en Rosner (1990), Altarelli et al. (1991)

Bound on $M_{z'}$ from cesium APV (68% confidence level, ξ = 52°) Wansbeek et al.. PRA,(2010) $M_{z'}$ > 1.2 TeV/C²

 ξ δQ_W $M_{z'} = 500 \text{GeV}$ 1 1000 GeV -1-2

(Tevatron $M_{Z'} > 0.9 \text{ TeV/}c^2$)

Bound (possible) on $M_{z'}$ from Ra⁺ APV $M_{z'} > 6 \text{ TeV/c}^2$

(full LHC M_{z'} ~4.5 TeV/c²)

The way to go!

Test of Standard Model Electroweak Interaction

groningen / VSI

Test of Standard Model Electroweak Interaction

groningen / VSI

Test of Standard Model Electroweak Interaction

S. Kumar, W. Marciano, Annu. Rev. of Nucl. Part. Sci. 63, 237 (2013)
H. Davoudiasl, Hye-Sung Lee, W. Marciano, arxiv. 1402.3620 (2014)
H. Davoudiasl, H. S. Lee and W. J. Marciano, Phys. Rev. D 92, 055005 (2015)

Atomic Parity Violation

Ba⁺ and Ra⁺

groningen VSI

Laser Spectroscopy in Ra⁺ lons

Good agreement with theory at few % level Theory improvement is in pipeline.

O.O. Versolato et al., Phys. Lett. A 375, 3130 (2012)
O.O. Versolato et al., Phys. Rev. A 82, 010501(R) (2010)
G.S. Giri et al., Phys. Rev. A 84, 020503(R) (2011)

TABLE VI. The radial differences $\delta \langle r^2 \rangle = \langle r^2 \rangle_i - \langle r^2 \rangle_0$ in fm² extracted using the database of Table II, and corrected for nuclear deformation (column 8), compared with the values listed in the Atomic Data and Nuclear Data Tables [20] (column 9, originally from ISOLDE [25]; the square brackets indicate that the 10% error needs to be taken towards higher absolute values). The factor B^i of Eq. (4) is given in MHz in column 2. Column 3 gives the corresponding results of Sec. III for the sharp cutoff nucleus using coupled-cluster (CC) theory for the field shift and specific mass shift for the reference transition. Columns 4, 5, and 6 give the results of Sec. IV needed to correct for nuclear deformation, with a sharp cutoff and Fermi nucleus using the Dirac-Fock (DF) approach. " Δ " in column 7 gives the relative difference in % between the sharp cutoff model in column 4 and the Fermi model with deformation in column 6. We use Δ to correct the value of column 3, which gives column 8. Because for A = 209 and 232 the reference transition at 468 nm in Ra⁺ is not available, the effect of the deformation could not be calculated; for these two isotopes, the results for Δ (in italics) are estimated by extrapolation of the results of the neighboring isotopes.

			$\delta \langle r^2 \rangle$ in	fm ²			$\delta \langle r^2 \rangle$	in fm ²
A	B^i in MHz	Sharp (CC)	Sharp (DF)	Fermi	Fermi (def.)	Δ in %	This work	ISOLDE
208	11 860(15)	-0.298(15)	-0.357	-0.361	-0.362	1.3	-0.302(16)	-0.256[27]
209	11 630(15)	-0.292(15)	_	_	_	1.3	-0.296(15)	-0.253[25]
210	8393(11)	-0.211(11)	-0.252	-0.255	-0.256	1.3	-0.214(11)	-0.182[19]
211	7728.9(70)	-0.1941(98)	-0.2320	-0.2347	-0.2			
212	4554.9(44)	-0.1144(58)	-0.1369	-0.1386	-0.1			
213	3035.3(41)	-0.0762(39)	-0.0911	-0.0922	-0.0	available	e δ(r²) value	es:
214	0	0	0	0	C			
220	-30731(18)	0.772(39)	0.920	0.946	0.9			
221	-36402(19)	0.914(47)	1.090	1.127	1.1	1.486(75) fm ²	
222	-40444(21)	1.016(52)	1.211	1.269	1.2		,	
223	-45 533(23)	1.144(58)	1.364	1.414	1.3		VS.	
224	-49 274(24)	1.238(63)	1.476	1.535	1.5		1 277/1	$20 \mathrm{fm}^2$
225	-54 560(27)	1.370(69)	1.634	1.701	1.6		1.2//(1	297111
226	-57 692(29)	1.449(73)	1.728	1.805	1.771	2.5	1.486(75)	1.277[129]
227	-61 638(32)	1.548(78)	1.846	1.929	1.892	2.5	1.587(80)	1.365[138]
228	-65864(34)	1.654(84)	1.973	2.068	2.023	2.6	1.697(86)	1.459[148]
229	-70235(37)	1.764(89)	2.103	2.208	2.158	2.6	1.810(92)	1.556[158]
230	-75243(39)	1.890(95)	2.253	2.391	2.317	2.8	1.943(98)	1.667[169]
232	-83590(47)	2.10(11)	-	-	-	2.8	2.16(11)	1.854[188]

•

•

•

Modeling of Line Shape

Optical Bloch equation

3 level example

$$\frac{d}{dt}\rho_{ij} = \frac{i}{\hbar} \left[H, \rho \right] + R(\rho)$$

	$(\Gamma_1(\frac{1}{3}\rho_{33} + \frac{2}{3}\rho_{44})$	$-\Gamma_{\Gamma_3}^{-1}\rho_{34}$	-7'00	$-\gamma' \rho_{14}$	-12P15	-72 Pin	-220	~71.018
	$-\Gamma_{1}\frac{1}{2}\rho_{43}$	$\Gamma_1(\frac{2}{3}\rho_{33} + \frac{1}{3}\rho_{44})$	~7'P23	$-\gamma'\rho_{24}$	-79/25	-79,026	$-\gamma_1\rho_{22}$	-71,028
	$-\gamma'\rho_{24}$	-7' P33	$-\Gamma\rho_{11}$	$-\Gamma\rho_{34}$	$-\gamma'\rho_{33}$	$-\gamma'\rho_{26}$	$-\gamma'\rho_{37}$	$-\gamma' \rho_m$
$\gamma(\lambda)$	$-\gamma'\rho_{kl}$	$-\gamma'\rho_{42}$	$-\Gamma\rho_{43}$	$-\Gamma \rho_{44}$	$-\gamma'\rho_{45}$	$-\gamma'\rho_{W}$	$-\gamma' \rho_{47}$	$-\gamma'\rho_{48}$
$f(\rho) =$	$-\gamma_1 \rho_{51}$	$-\gamma_1\rho_{22}$	-4'033	-7'154	F23,033	$\Gamma_{2,\frac{1}{2},\sqrt{2}}\rho_{24}$	0	0
(P)	-22/44	-11/42	$-\gamma'\rho_{00}$	$-\gamma'\rho_{64}$	P2-7-1P40	$\Gamma_2(\frac{1}{3}\rho_{33} + \frac{1}{6}\rho_{44})$	$\Gamma_{23}^{-1}\rho_{34}$	0
	-22023	$-\gamma_1\rho_{2}$	-y'pu	$-\gamma'\rho_{14}$	0	Γ_2 ρ_{kb}	$\Gamma_2(\frac{1}{6}\rho_{33} + \frac{1}{3}\rho_{44})$	F2-7P4
	-29,081	-29,062	$-\gamma'\rho_{\rm KI}$	$-\gamma'\rho_{\rm SI}$	0	0	$\Gamma_2 \frac{1}{2\sqrt{3}} \rho_{43}$	$\Gamma_{2\frac{1}{2}}\rho_{44}$

 $\Gamma = \Gamma_1 + \Gamma_2$ relaxation rate $\gamma = \Gamma/2$ decoherence rate γ_c laser linewidth

groningen / VSI

Line Shapes and Polarization

groningen VSI

Transition Frequencies

- Data fit to optical Bloch equation model
- Extract transition frequencies with 100 kHz accuracy

Ba⁺ Experiment : Lifetime D_{5/2}

Radium for APV

Accuracy of single ion Experiment

$$\frac{\mathscr{E}^{\mathsf{PNC}}}{\delta\mathscr{E}^{\mathsf{PNC}}} \cong \frac{\mathscr{E}^{\mathsf{PNC}} E_0}{\hbar} f \sqrt{N\tau t}$$

 $E_0 = Light$ electric field amplitude, $\tau = Coherence$ time N = Number of ions = 1, t = Time of observation

	Coherence Time	Projected Accuracy	Measurement Time
Ba⁺	80 sec	0.2%	1.1 day
Ra⁺	0.6 sec	0.2%	1.4 day

→ 10 days for 5 fold improvement over Cs

SUMMARY

Precision Tests of Discrete Symmetries at Low Energies

- ➤ A few Selected Experiments
 → Focus on Transformativity
- ≻ C, P, CP, CPT Tests
 → Precision Test of Standard Model

- Experiment & Theory Hand in Hand
 - → Atomic Parity Violation and EDM to search for New Physics

Search for permanent Electric Dipole Moments

- → Atoms & Molecules with Enhancement
- → Electron and Nucleon EDMs
- → Some Radioactive Species may have Advantages
- \rightarrow No particular advantage from Radioactivity per se
- → Central Goal: Challenge New Physics Models

THANK YOU !

