Effective Value of g_A in β and $\beta\beta$ Decays

Jouni Suhonen

Department of Physics, University of Jyväskylä

Beyond the Standard Model with Neutrinos and Nuclear Physics Brussels, Belgium, Octoberber 29 - December 1, 2017

Contents:

- Incentive for *g*^A studies
- GT and SD β Decays
- Unique Spin-Multipole Decays
- Nonunique forbidden β Decays (spectrum-shape method)

Motivation for the Work: Double Beta Decay

Two-Neutrino Double Beta Decay of ¹¹⁶Cd

Neutrinoless Double Beta Decay of ¹¹⁶Cd

Definitions

The talk is based on "Value of the axial-vector coupling strength in β and $\beta\beta$ decays: A review" published in **Frontiers in Physics 5 (2017) 55**. Quenching:

$$q = g_{\rm A}/g_{\rm A}^{\rm free}$$

Free value of g_A (Particle Data Group 2016):

$$g_{\rm A}^{\rm free} = 1.2723(23)$$

Effective value of g_A :

$$g_{\rm A}^{\rm eff} = q g_{\rm A}^{\rm free}$$

There are data on:

Gamow-Teller β TRANSITIONS

Theoretical approaches:

ISM (Interacting Shell Model) pnQRPA (proton-neutron QRPA)

Typical Gamow-Teller β transitions

Results from:

Quenching of g_A in the ISM calculations

Results from the ISM

Mass range	$g_{\rm A}^{\rm eff}$	Reference
Full 0 <i>p</i> shell	$1.03^{+0.03}_{-0.02}$	W. T. Chou <i>et al.</i> 1993
0p - low1s0d shell	$1.12_{-0.04}^{+0.05}$	D. H. Wilkinson <i>et al.</i> 1974
Full 1s0d shell	$0.96^{+0.03}_{-0.02}$	B. H. Wildenthal <i>et al.</i> 1983
	1.0	T. Siiskonen <i>et al.</i> 2001
A = 41 - 50 (1p0f shell)	$0.937^{+0.019}_{-0.018}$	G. Martínez-Pinedo et al. 1996
1 <i>p</i> 0 <i>f</i> shell	0.98	T. Siiskonen <i>et al.</i> 2001
⁵⁶ Ni	0.71	T. Siiskonen <i>et al.</i> 2001
A = 52 - 67 (1p0f shell)	$0.838^{+0.021}_{-0.020}$	V. Kumar <i>et al.</i> 2016
$A = 67 - 80 (0 f_{5/2} 1 p 0 g_{9/2} \text{ shell})$	0.869 ± 0.019	V. Kumar <i>et al.</i> 2016
A = 63 - 96 (1p0f0g1d2s shell)	0.8	M. Honma <i>et al.</i> 2006
$A = 76 - 82 (1p0f0g_{9/2} \text{ shell})$	0.76	E. Caurier <i>et al.</i> 2012
A = 90 - 97 (1p0f0g1d2s shell)	0.60	A. Juodagalvis <i>et al.</i> 2005
¹⁰⁰ Sn	0.52	T. Siiskonen et al. 2001
$A = 128 - 130 (0g_{7/2} 1d_{2s} 0h_{11/2} \text{ shell})$	0.72	E. Caurier <i>et al.</i> 2012
$A = 130 - 136 (0g_{7/2} 1d2s0h_{11/2} \text{ shell})$	0.94	M. Horoi <i>et al.</i> 2016
$A = 136 \ (0g_{7/2}1d2s0h_{11/2} \text{ shell})$	0.57	E. Caurier <i>et al.</i> 2012

Results from the ISM (illustration)

- Kumar *et al.*: J. Phys. G 43 (2016) 105104
- Honma *et al.*: J. Phys. Conf. Ser. 49 (2006) 45
- Caurier *et al*.: Phys. Lett. B 711 (2012) 62
- Horoi *et al.*: Phys. Rev. C 93 (2016) 024308
- Juodagalvis *et al.*: Phys. Rev. C 72 (2005) 024306
- Siiskonen *et al.*: Phys. Rev. C 63 (2001) 055501

Proton-neutron Quasiparticle Random-Phase Approximation (pnQRPA)

Results from:

Quenching of g_A in the pnQRPA calculations

Results from the pnQRPA analyses

А	pn Conf.	$\bar{g}_{\rm A}^{\rm eff}$ [1]	_
62 - 70 78 - 82 98 - 116 118 - 136 138 - 142	$\begin{array}{r} 1p_{3/2} - 1p_{1/2} \\ 0g_{9/2} - 0g_{9/2} \\ 0g_{9/2} - 0g_{7/2} \\ 1d_{5/2} - 1d_{5/2} \\ 1d_{5/2} - 1d_{2/2} \end{array}$	$\begin{array}{c} 0.81 \pm 0.20 \\ 0.88 \pm 0.12 \\ 0.53 \pm 0.13 \\ 0.65 \pm 0.17 \\ 1.14 \pm 0.10 \end{array}$	

[1] H. Ejiri, J. Suhonen, J. Phys. G 42(2015) 055201

Other analyses in the whole range:

[2] P. Pirinen, J. Suhonen, Phys. Rev. C

91 (2015) 054309

[3] F. Deppisch, J. Suhonen, Phys. Rev. C 94 (2016) 055501

Fundamental quenching: M. Ericson (1971); M. Ericson *et al.* (1973); M. Rho (1974); D. H. Wilkinson (1974)

(Meson-exchange currents → effective two-body operators)

Results from the ISM on top of the pnQRPA ranges

- Kumar *et al.*: J. Phys. G 43 (2016) 105104
- Honma *et al.*: J. Phys. Conf. Ser. 49 (2006) 45
- Caurier *et al*.: Phys. Lett. B 711 (2012) 62
- Horoi *et al.*: Phys. Rev. C 93 (2016) 024308
- Juodagalvis *et al.*: Phys. Rev. C 72 (2005) 024306
- Siiskonen *et al.*: Phys. Rev. C 63 (2001) 055501

Calculations for the β decays and $\beta\beta$ decays

Results from:

Quenching of g_A in the pnQRPA-based, ISM-based and **IBM-based** calculations of β decays and $\beta\beta$ decays

Results from the pnQRPA, IBM-2, and IBFFM-2

Α	pnQRPA			IBFFM-2 [1]		IBM-2 [2]
	$g_{A}(\beta + \beta \beta)$ [3]	$g_{A}(\beta)$ [4]	$g_{A}(\beta\beta)$ [4]	$g_{\rm A}(\beta)$	$g_{\rm A}(\beta\beta)$	$g_{\rm A}(\beta\beta)$
100	0.70 - 0.79	0.61 - 0.70	0.75 - 0.85	-	-	0.46(1) [SSD]
116	0.81 - 0.88	0.66 - 0.81	0.59 - 0.65	-	-	0.41(1) [SSD]
128	0.37 - 0.41	0.330 - 0.335	0.38 - 0.43	0.25 - 0.31	0.293	0.55(3) [CA]

[1] N. Yoshida, F. Iachello, Prog. Theor. Exp. Phys. 2013 (2013) 043D01 ; [2] J. Barea, J. Kotila, F. Iachello, Phys. Rev. C 87 (2013) 014315 ; [3] A. Faessler et al., arXiv 0711.3996v1 [Nucl-th] ; [4] J. Suhonen, O. Civitarese, Nucl. Phys. A 924 (2014) 1

Results from the $\beta + \beta \beta$ calculations against the pnQRPA ranges from Gamow-Teller β decays

- Faessler et al.: A. Faessler, G. L. Fogli, E. Lisi, V. Rodin, A. M. Rotunno, F. Šimkovic, arXiv 0711.3996v1 [Nucl-th]
- Suhonen *et al.*: J.
 Suhonen, O. Civitarese, Nucl. Phys. A 924 (2014) 1
- ββ ISM and IBM-2: J. Barea, J. Kotila, F. Iachello, Phys. Rev. C 87 (2013) 014315

Results from:

Quenching of g_A as derived from spin-multipole NMEs of forbidden unique β decays

Spin-multipole (SM) nuclear matrix elements

General half-life formula for the allowed and unique-forbidden beta decays

$$t_{1/2}^{K}(0_{\mathrm{gs}}^{+}\leftrightarrow J^{\pi}) = rac{\mathrm{Constant}}{rac{g_{\mathrm{A}}^{2}}{2J_{i}+1}(M^{K}(\mathrm{SM}J^{\pi}))^{2}f_{K}}$$

where

- f_K is the phase-space factor for the K^{th} forbidden (allowed $\equiv 0^{th}$ forbidden) unique β -decay transition,
- g_A is the axial-vector coupling constant,
- $J_i = J$ or $J_i = 0$ (J = K + 1) is the angular momentum of the decaying state, and
- $M^{K}(SMJ^{\pi})$ is the spin-multipole NME for the K^{th} forbidden unique transition.

The unique decays are classified as:

Κ	0 (allowed)	1	2	3	4	5	6	7
J^{π}	1^{+}	2^{-}	3+	4^{-}	5^{+}	6-	7+	8-

Global study for the first-forbidden (*K* = 1) spin-dipole $2_{gs}^- \rightarrow 0_{gs}^+$ decays

H. Ejiri, N. Soukouti and J. Suhonen, Spin-dipole nuclear matrix elements for double beta decays and astro-neutrinos, Phys. Lett. B 729 (2014) 27 2_{gs}^{-1}

Decays through higher spin-multipole ($K \ge 2$) operators

Question:

WHAT CAN WE LEARN FROM THE UNIQUE HIGHER-FORBIDDEN β DECAYS?

Answer:

A LOT!

Jouni Suhonen (JYFL, Finland)

INCENTIVE: $0\nu\beta\beta$ decay through the higher spin-multipole states

Decays through higher spin-multipole ($K \ge 2$) operators

Task:

STUDY 148 UNIQUE HIGHER-FORBIDDEN β DECAYS IN ISOTOPIC CHAINS

Problem:

NO EXP. DATA AVAILABLE

Study:

$$k = rac{M_{
m pnQRPA}^{K}({
m SMJ}^{\pi})}{M_{
m qp}^{K}({
m SMJ}^{\pi})} = ?$$

Dependence on *K* and mass number *A*?

Jouni Suhonen (JYFL, Finland)

Example: Decays in the A = 88 chain

Example: Decays in the A = 130 chain (including a $\beta\beta$ decay)

Ratio k for 74 β decays involving non-magic nuclei

k extracted using the geometric mean of the full set of K^{th} (K = 2 - 7) forbidden β -decay transitions in an isobaric chain (J. Kostensalo, J. Suhonen, Phys. Rev. C 95 (2017) 014322)

Jouni Suhonen (JYFL, Finland)

Solvay17 25 / 38

Separation to β^- and β^+ /EC decays

Results for the Ratio $k = M_{pnQRPA}^{K}(SMJ^{\pi})/M_{qp}^{K}(SMJ^{\pi})$

А	GT [1]	K = 1 [2]	K = 2	K = 3	K = 4	K = 5	K = 6	K = 7	Avg.
50 - 88	0.35	0.40	0.25	0.46	0.43	0.43	-	-	0.39
90 - 122	0.52	0.40	0.25	0.35	0.34	0.38	0.41	0.13	0.31
122 - 146	0.40	0.40	0.30	0.28	0.07	0.35	-	0.19	0.24
Average	0.42	0.40	0.27	0.36	0.28	0.39	0.41	0.16	0.31

[1] H. Ejiri, J. Suhonen, J. Phys. G: Nucl. Part. Phys. 42 (2015) 055201

[2] H. Ejiri, N. Soukouti, J. Suhonen, Phys. Lett. B 729 (2014) 27

Conclusion: *k* is roughly independent of $K \Rightarrow$ Low-energy quenching of g_A derivable from the hatched regions of the Gamow-Teller studies in the pnQRPA framework:

Mass range	A = 76 - 82	A = 100 - 116	A = 122 - 136
$g_{\mathrm{A},0 u}^{\mathrm{eff}}$	0.7 - 0.9	0.5	0.5 - 0.7

Assumption: Also the forbidden non-unique virtual transitions behave like the forbidden unique virtual transitions.

Jouni Suhonen (JYFL, Finland)

Results from:

Effective value of g_A as derived from electron spectra of forbidden non-unique β decays

First-forbidden non-unique $J^+ \leftrightarrow J^- \beta$ decays

Enhancement of the time component of the axial current:

Nuclear matrix elements

 $g_A \mathcal{M}_{K+1,K,1}$ (unique transitions); $g_A \mathcal{M}_{K,K,1}$; $g_V \mathcal{M}_{K,K,0}$; $g_V \mathcal{M}_{K,K-1,1}$

for *K*-fold forbidden β transitions emerge from the nucleonic current $j_N^{\mu} = g_V \gamma^{\mu} - g_A \gamma^{\mu} \gamma^5$. Two additional contributions $(g_A \mathcal{M}_{0,1,1}; g_A \mathcal{M}_{0,0,0})$ for $J^+ \leftrightarrow J^- \beta$ decays:

space components
$$g_A \gamma^k \gamma^5 \longrightarrow g_A \mathbf{r} \cdot \boldsymbol{\sigma}$$

time component $g_A \gamma^0 \gamma^5 \longrightarrow g_A (\gamma^5) \frac{\boldsymbol{\sigma} \cdot \mathbf{p}_e}{M_N c^2}$ (axial charge)

Axial-charge NME $g_A(\gamma^5)\mathcal{M}_{0,0,0}$

ENHANCED through $g_A(\gamma^5)$: Predicted 40 years ago by arguments based on soft-pion theorems and chiral symmetry. In the 90's studied from the perspective of exchange of heavy mesons.

Axial-charge strength as function of the mass number

Previous studies: E. K. Warburton, I. S. Towner and B. A. Brown, Phys. Rev. C 49 (1994) 824 ; E. K. Warburton, J. A. Becker, B. A. Brown and D. J. Millener, Annals of Physics 187 (1988) 471 ; E. K. Warburton, Phys. Rev. C 44 (1991) 233.

Effect of axial-charge strength on β spectra

Spectrum shape of higher-forbidden non-unique β decays

Half-life:

$$t_{1/2} = \kappa / \tilde{C} \,.$$

Dimensionless integrated shape function:

$$\tilde{C} = \int_1^{w_0} C(w_e) p w_e(w_0 - w_e)^2 F_0(Z_f, w_e) \mathrm{d} w_e \,.$$

Shape factor:

$$C(w_{e}) = \sum_{k_{e},k_{\nu},K} \lambda_{k_{e}} \left[M_{K}(k_{e},k_{\nu})^{2} + m_{K}(k_{e},k_{\nu})^{2} - \frac{2\gamma_{k_{e}}}{k_{e}w_{e}} M_{K}(k_{e},k_{\nu})m_{K}(k_{e},k_{\nu}) \right] ,$$

where

$$\lambda_{k_e} = \frac{F_{k_e-1}(Z, w_e)}{F_0(Z, w_e)} ; \quad \gamma_{k_e} = \sqrt{k_e^2 - (\alpha Z_f)^2} ,$$

 $F_{k-1}(Z, w_e)$ being the generalized Fermi function.

Decomposition of the shape factor:

$$C(w_e) = g_{\mathrm{V}}^2 C_{\mathrm{V}}(w_e) + \frac{g_{\mathrm{A}}^2 C_{\mathrm{A}}(w_e)}{g_{\mathrm{V}} g_{\mathrm{A}} C_{\mathrm{VA}}(w_e)}.$$

ISM-computed β spectra for different values of g_A

Normalized ISM-computed electron spectra for the 2*nd*-forbidden nonunique $\beta^$ decays of ⁹⁴Nb and ⁹⁸Tc ($g_V = 1.0$).

Example: ISM- and MQPM-computed electron spectra

Normalized ISMand MQPM-computed electron spectra for the 2*nd*-forbidden nonunique β^- decay of ⁹⁹Tc ($g_V = 1.0$) using different values of g_A .

Example: Decay of ¹¹³Cd – Comparison with data

Summary of the exploratory work on β spectra

Transition	$J_i^{\pi_i}$ (gs)	$J_f^{\pi_f}(n_f)$	Branching	Κ	Sensitivity	Nucl. model
$^{36}Cl \rightarrow \ ^{36}Ar$	2+	0^{+} (gs)	98%	2	None	ISM
$^{48}\text{Ca} ightarrow ^{48}\text{Sc}$	0^{+}	$4^{+}(2)$	$\sim 0\%$	4	None	ISM
$^{48}\text{Ca} ightarrow ^{48}\text{Sc}$	0^{+}	6^{+} (gs)	$\sim 0\%$	6	None	ISM
$^{50}V ightarrow ^{50}Cr$	6^{+}	$2^{+}(1)$	$\sim 0\%$	4	Weak	ISM
$^{60}\mathrm{Fe} ightarrow ^{60}\mathrm{Co}$	0^{+}	$2^{+}(1)$	100%	2	None	ISM
$^{85}\mathrm{Br} ightarrow ^{85}\mathrm{Kr}$	$3/2^{-}$	$9/2^{+}$ (gs)	$\sim 0\%$	3	Moderate	MQPM
$^{87}\mathrm{Rb} ightarrow ^{87}\mathrm{Sr}$	$3/2^{-}$	$9/2^{+}$ (gs)	100%	3	Moderate	MQPM, ISM
$^{93}{ m Zr} ightarrow ^{93}{ m Nb}$	$5/2^{+}$	$9/2^{+}$ (gs)	$5 \leq \%$	2	Weak	MQPM
$^{94}\text{Nb} \rightarrow ^{94}\text{Mo}$	6+	4+ (2)	100%	2	Strong	NSM
$^{96}{ m Zr} ightarrow ^{96}{ m Nb}$	0^{+}	$4^{+}(2)$	$\sim 0\%$	4	None	ISM
$^{96}{ m Zr} ightarrow ^{96}{ m Nb}$	0^{+}	6^{+} (gs)	$\sim 0\%$	6	Strong	ISM
$^{97}{ m Zr} ightarrow ^{97}{ m Nb}$	$1/2^{+}$	$9/2^{+}$ (gs)	$\sim 0\%$	4	Strong	MQPM
$^{98}\mathrm{Tc} ightarrow ^{98}\mathrm{Ru}$	6+	4+ (3)	100%	2	Strong	ISM
$^{99}\mathrm{Tc} ightarrow ^{99}\mathrm{Ru}$	$9/2^{+}$	$5/2^{+}$ (gs)	100%	2	Strong	MQPM, ISM
$^{101}\mathrm{Mo} ightarrow ^{101}\mathrm{Tc}$	$1/2^{+}$	$9/2^{+}$ (gs)	$\sim 0\%$	4	Strong	MQPM
$^{113}\text{Cd} \rightarrow ^{113}\text{In}$	$1/2^{+}$	$9/2^{+}$ (gs)	100%	4	Strong	MQPM, ISM, IBFM-2
$^{115}\text{Cd} \rightarrow ^{115}\text{In}$	$1/2^{+}$	$9/2^+$ (gs)	$\sim 0\%$	4	Strong	MQPM
115 In $\rightarrow \ ^{115}$ Sn	$9/2^{+}$	$1/2^{+}$ (gs)	100%	4	Strong	MQPM, ISM, IBFM-2

Transition	$J_i^{\pi_i}$ (gs)	$J_f^{\pi_f}(n_f)$	Branching	Κ	Sensitivity	Nucl. model
$^{117}\text{Cd} \rightarrow ^{117}\text{In}$	$1/2^{+}$	$9/2^{+}$ (gs)	$\sim 0\%$	4	Strong	MQPM
119 In $\rightarrow \ ^{119}$ Sn	$9/2^{+}$	$1/2^{+}$ (gs)	$\sim 0\%$	4	Strong	MQPM
$^{123}\text{Sn} \rightarrow \ ^{123}\text{Sb}$	$11/2^{-}$	$1/2^+$ (4)	$\sim 0\%$	5	Weak	MQPM
$^{126}\text{Sn} \rightarrow ^{126}\text{Sb}$	0^{+}	2+ (5)	100%	2	None	ISM
$^{135}\mathrm{Cs} ightarrow ^{135}\mathrm{Ba}$	$7/2^{+}$	$3/2^{+}$ (gs)	100%	2	None	MQPM
$^{137}Cs \rightarrow ~^{137}Ba$	$7/2^{+}$	$3/2^{+}$ (gs)	5.4%	2	None	MQPM, ISM
$^{125}\text{Sb} \rightarrow ^{125}\text{Te}$	$7/2^{+}$	$9/2^{-}(3)$	7.2%	1	None	MQPM
$^{141}\mathrm{Ce} ightarrow ^{141}\mathrm{Pr}$	$7/2^{-}$	$5/2^{+}$ (gs)	31%	1	Weak	MQPM
$^{159}\mathrm{Gd} ightarrow ^{159}\mathrm{Tb}$	$3/2^{-}$	$5/2^{+}$ (1)	26%	1	None	MQPM
$^{161}\text{Tb} \rightarrow ^{161}\text{Dy}$	$3/2^{+}$	$5/2^{-}(1)$	$\sim 0\%$	1	None	MQPM
$^{169}\mathrm{Er} ightarrow ^{169}\mathrm{Tm}$	$1/2^{-}$	3/2+ (1)	45%	1	None	MQPM

Conclusions and Outlook

Conclusions:

- The long chain of ISM calculations and the recent pnQRPA and IBM-2 calculations of Gamow-Teller β decays and $2\nu\beta\beta$ decays are (surprisingly!) consistent with each other and clearly point to a *A*-dependent quenched g_A
- Previous studies on GT 1⁺ and SD 2⁻ β decays shed light on the suppression chain: quasiparticle NME \rightarrow pnQRPA NME \rightarrow experimental NME
- Studies of unique high-forbidden β decays ($K \ge 2$) give the suppression chain: quasiparticle NME \rightarrow pnQRPA NME \rightarrow Previous GT and SD studies \rightarrow one can speculate about modifications in the pnQRPA-computed $0\nu\beta\beta$ -decay half-lives (About the impact on the sensitivity of $0\nu\beta\beta$ experiments, see also Phys. Rev. C 96 (2017) 055501)
- The spectrum-shape method (SSM) for forbidden non-unique β decays is a robust tool (largely independent of the nuclear model, the assumed Hamiltonian and mean field) to seach for the effective value of g_A

Outlook:

- Urge measurements of the β spectra for the (5) interesting decays amenable to the SSM
- Find ways to use the present studies in a more reliable prediction of the pnQRPA-based $0\nu\beta\beta$ NMEs