

Neutrino Mass Ordering: Hints and Challenges

Solvay ${f v}$ Workshop, Brussels, 2017

← René Magritte, Voice of Space (1931)

OUTLINE:

- Prologue: 3v knowns and unknowns
- Global 3v oscillation analysis and mass ordering
- Combination with nonoscillation constraints
- Future challenges
- Epilogue

Mainly based on:

F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri, A. Palazzo, **"Global constraints on absolute neutrino masses and their ordering"** arXiv:1703.04471 [PRD 95, 096014 (2017)]

For independent analyses, see also Esteban+ 1611.01514; de Salas+ 1708.01186

Prologue: 3v paradigm - parameters

Mixings and phases: CKM→ PMNS (Pontecorvo-Maki-Nakagawa-Sakata)

Mass [squared] spectrum ($E \sim p + m^2/2E + "interaction energy"$)

v flavor oscillation experiments: $\alpha \rightarrow \beta$ in vacuum and matter

Data from various types of neutrino experiments: (a) solar, (b) long-baseline reactor, (c) atmospheric, (d) long-baseline accelerator, (e) short-baseline reactor, (f,g) long baseline accelerator (and, in part, atmospheric).

(a) KamLAND [plot]; (b) Borexino [plot], Homestake, Super-K, SAGE, GALLEX/GNO, SNO; (c) Super-K atmosph. [plot], DeepCore, MACRO, MINOS etc.; (d) T2K (plot), MINOS, K2K; (e) Daya Bay [plot], RENO, Double Chooz; (f) T2K [plot], MINOS, NOvA; (g) OPERA [plot], Super-K atmospheric.

(OPERA, SK) FILM

1500

 $\mu \rightarrow \tau$

FILM

FILM

>2000

0.6

0.8

Leading sensitivities to 3v oscillation parameters:

Data from various types of neutrino experiments: (a) solar, (b) long-baseline reactor, (c) atmospheric, (d) long-baseline accelerator, (e) short-baseline reactor, (f,g) long baseline accelerator (and, in part, atmospheric).

(a) KamLAND [plot]; (b) Borexino [plot], Homestake, Super-K, SAGE, GALLEX/GNO, SNO; (c) Super-K atmosph. [plot], DeepCore, MACRO, MINOS etc.; (d) T2K (plot), MINOS, K2K; (e) Daya Bay [plot], RENO, Double Chooz; (f) T2K [plot], MINOS, NOvA; (g) OPERA [plot], Super-K atmospheric.

FILM

"Broad-brush" 3v picture (with 1-digit accuracy)

Hi-res and larger picture \rightarrow Global analysis of ν oscill. data

Analysis includes increasingly rich oscillation data sets:

LBL Acc + Solar + KL LBL Acc + Solar + KL + SBL Reactor LBL Acc + Solar + KL + SBL Reactor + Atmosph.

 χ^2 metric adopted. Parameters not shown are marginalized away:

C.L.'s refer to N
$$\sigma = \sqrt{\Delta \chi^2} = 1, 2, 3, ...$$

Global fit results taken from 1703.04471 . Note: KL=KamLAND.

Five known oscillation parameters:

1

1

Current 1 σ errors (1/6 of ±3 σ range):

δm ²	2.3 %
∆m²	1.6 %
$sin^2\theta_{12}$	5.8 %
$sin^2\theta_{13}$	4.0 %
$\sin^2\theta_{23}$	~9 %

all < 10%... 2 - 3 digits needed

→ Precision Era!

[but: PMNS still very far from CKM accuracy]

→ novel expt+theo challenges (fluxes, cross sections, ...) in nuclear physics

Three unknown oscillation parameters

More on unknown oscillation parameters:

+1.1

(IO-NO)

)1

10

More on unknown oscillation parameters:

More on unknown oscillation parameters:

Compare the current results (circa 2017) with...

... 1yr ago, 2016: trends were somewhat weaker

Currently: ~2 σ hints in favor of Dirac CPV, NO, and non-maximal θ_{23} (*)

Time will tell if these hints will grow up!

(*) Latest T2K data (Aug. 2017) not yet included in this fit.

Update (2018) of the global analysis with these and other data is in progress

15

Very personal and subjective rating of such $\sim 2\sigma$ hints:

Hints are "entangled" as subleading effects in v_{e} appearance channel

[They might also be entangled with BSM neutrino physics, if any]

Hints may (not) converge better in one mass ordering wrt the other

[Supplementary to arXiv:1703.04471]

17

Mass ordering via oscillations

Oscillation experiments can determine the sign of $\pm \Delta m^2 \dots$

...if they can observe interference of oscill. driven by $\pm \Delta m^2$ with oscill. driven by a quantity **Q** having known sign. Three options:

 $\begin{array}{ll} {\sf Q} \sim \delta m^2 & \mbox{medium-baseline reactors}^{(a)} \\ {\sf Q} \sim {\sf G}_{\sf F} \, {\sf E} \, {\sf N}_{\sf e} & \mbox{matter effects in accel./atmosph. v}^{(b)} \\ {\sf Q} \sim {\sf G}_{\sf F} \, {\sf E} \, {\sf N}_{\sf v} & \mbox{self-interaction effects in supernovae}^{(c)} \end{array}$

(a) JUNO

(b) Atmos: KM3NeT-ORCA, PINGU, HyperK...; Accel.: DUNE, T2HK, ...

(c) All operating low-E detectors

Mass ordering via oscillations

Oscillation experiments can determine the sign of $\pm \Delta m^2 \dots$

...if they can observe interference of oscill. driven by $\pm \Delta m^2$ with oscill. driven by a quantity **Q** having known sign. Three options:

Q ~ δm ²	medium-baseline reactors
Q ~ G _F E N _e	matter effects in accel./atmosph. ${f v}$
$\mathbf{Q} \sim \mathbf{G}_{\mathbf{F}} \mathbf{E} \mathbf{N}_{\mathbf{v}}$	self-interaction effects in supernovae

Nonoscillation searches may provide further probes of ordering – [independently on $\delta_{\rm CP}$ and on $\theta_{\rm 23}$]

3v paradigm: absolute v masses and observables

(m_{β} , $m_{\beta\beta}$, Σ)

 β decay, sensitive to the "effective electron neutrino mass":

 $m_{\beta} = \left[c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2\right]^{\frac{1}{2}}$

Cosmology: Dominantly sensitive to sum of neutrino masses:

 $\mathbf{0v}\beta\beta$ **decay**: only if Majorana. "Effective Majorana mass":

 $m_{\beta\beta} = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|$

$$\Sigma = m_1 + m_2 + m_3$$

Note 1: These observables may provide handles to distinguish NO/IO. Note 2: Majorana case gives a new source of CPV (unconstrained) Note 2: The three observables are correlated by oscillation data \rightarrow 20

Constraints on nonoscillation observables from oscillation data

Upper limits on m_{β} , $m_{\beta\beta}$, Σ (up to some syst.) + osc. constraints

Cosmological data generally prefer the smallest values for the total neutrino mass, and already contribute to put IO "under pressure" \rightarrow

Grand total of IO-NO differences:

[See 1703.04471 for detailed discussion]

The statistical significance of possible hints about ordering is currently debated.

If they are not fluctuations, expect (fractional) improvements in upcoming years

Dedicated projects are planned with reactor, atmospheric, accel. neutrinos...

... and on absolute masses. Upper limits on m_{β} , $m_{\beta\beta}$, Σ in ~10 years ?

Large phase space for discoveries about v mass and nature.

Theoretical challenges: cosmo high accuracy calculations/simulations, NME uncertainties

Oscillations: A glimpse of upcoming challenges...

Once upon a time... all neutrino observations were limited by stat's, and systematics could be treated as numbers (normalization, bias ...)

Now we have as many as $O(10^6)$ events collected in SBL reactors, and we expect $O(10^5)$ events in each of JUNO, ORCA, PINGU etc.

<u>Systematic errors</u> are no longer "numbers" but become "<u>functions</u>". Dedicated approaches are needed to deal with such uncertainties.

[This transition has already taken place in other fields, such as in parton distribution function fits and precision cosmology forecasts.]

Unprecedented challenges are awaiting us in neutrino data analyses:

We must be prepared to deal with "functions" which *ideally* should be known in size, shape, correlations and probability distributions, but *in practice* may also be partly (if not completely!) unknown. Hard lesson learned from current reactor experiments: An unknown systematic error source (function) $\delta \Phi(E)$, well beyond supposedly-known shape uncertainties!

Now we know its shape, and can correct for it, but residuals do remain:

energy-scale uncertainties flux-shape uncertainties $\begin{array}{l} \mathsf{E} \rightarrow \mathsf{E'(\mathsf{E})} \\ \Phi \ (\mathsf{E}) \rightarrow \Phi'(\mathsf{E}) \end{array}$

(x-axis "stretch") (y-axis "stretch") Recent evaluations of energy-scale and flux-shape errors (reactors)

[Note sawtooth-like spectrum]

Smoothed errors assumed to be linear and symmetric (gaussian)

Energy-scale and flux-shape errors with constrained "size" but unconstrained "shape" can noticeably lower JUNO sensitivity

In addition: sawtooth-like fluctuations may further affect and challenge JUNO performances! Near detector needed? [See next reactor talks]

Another example: effect of shape uncertainties on energy-angle spectra in ORCA

Other functional uncertainties in future expts: differential neutrino cross-sections, nuclear form factors (including M_A , g_A), inhomogeneities of large-volume detectors, ...

Epilogue

Start to have some **hints** on **v** mass ordering. But: unprecedented **challenges** before we can really "see" it! **Surprises?**

"Everything we see hides another thing, we always want to see what is hidden by what we see."

Extra slides

Current indication $\Delta \chi^2_{IO-NO} = 3.6$ from oscill. data starts to be interesting. Useful to see the effect of excluding/including this offset in the analysis:

Two different ways of marginalizing over mass ordering(s) \rightarrow

Apply a " $\Delta \chi^2$ cut" to **SEPARATE** minima in **NO**, **IO**....

(does not include IO-NO offset information)

... or minimize and expand over ANY ORDERING

(includes IO-NO offset information)

TABLE I: Results of the global 3ν oscillation analysis, in terms of best-fit values for the mass-mixing parameters and associated $n\sigma$ ranges (n = 1, 2, 3), defined by $\chi^2 - \chi^2_{\min} = n^2$ with respect to the separate minima in each mass ordering (NO, IO) and to the absolute minimum in any ordering. (Note that the fit to the δm^2 and $\sin^2 \theta_{12}$ parameters is basically insensitive to the mass ordering.) We recall that Δm^2 is defined herein as $m_3^2 - (m_1^2 + m_2^2)/2$, and that δ is taken in the (cyclic) interval $\delta/\pi \in [0, 2]$.

Parameter	Ordering	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5}~{\rm eV^2}$	NO, IO, Any	7.37	7.21 - 7.54	7.07 - 7.73	6.93 - 7.96
$\sin^2 \theta_{12} / 10^{-1}$	NO, IO, Any	2.97	2.81 - 3.14	2.65-3.34	2.50-3.54
$ \Delta m^2 /10^{-3} \text{ eV}^2$	NO	2.525	2.495 - 2.567	2.454 - 2.606	2.411 - 2.646
	IO	2.505	2.473 - 2.539	2.430 - 2.582	2.390 - 2.624
	Any	2.525	2.495 - 2.567	2.454 - 2.606	2.411 - 2.646
$\sin^2 heta_{13}/10^{-2}$	NO	2.15	2.08-2.22	1.99-2.31	1.90-2.40
	IO	2.16	2.07-2.24	1.98 - 2.33	1.90-2.42
	Any	2.15	2.08 - 2.22	1.99 - 2.31	1.90 - 2.40
$\sin^2 \theta_{23}/10^{-1}$	NO	4.25	4.10 - 4.46	3.95-4.70	3.81 - 6.15
	IO	5.89	$4.17-4.48 \oplus 5.67-6.05$	$3.99-4.83 \oplus 5.33-6.21$	3.84 - 6.36
	Any	4.25	4.10 - 4.46	$3.95-4.70\oplus5.75-6.00$	3.81-6.26
δ/π	NO	1.38	1.18 - 1.61	1.00 - 1.90	$0-0.17\oplus 0.76-2$
	IO	1.31	1.12-1.62	0.92-1.88	$0-0.15\oplus 0.69-2$
	Any	1.38	1.18 - 1.61	1.00 - 1.90	$0 - 0.17 \oplus 0.76 - 2$

Current leading $0\nu\beta\beta$ constraints

Cosmological constraints (circa 2017)

Analysis of various **datasets** within standard (6-param.) **ACDM model** augmented with Σ plus one possible 1 extra parameter **A**_{lens}, to account for syst's or nonstandard effects [**A**_{lens} > 1 may be typically traded for higher values of the sum of neutrino mass Σ]

Code: CosmoMC with NO / IO options explicitly included in Σ, via the two mass² differences
 → unphysical spectra of neutrino masses (e.g., Σ = 0) not allowed by construction.
 → expect small NO-IO differences at low Σ, but vanishing at high Σ (degenerate spectrum)

Cosmological constraints (circa 2017)

Analysis of various **datasets** within standard (6-param.) Λ CDM model augmented with Σ plus one possible 1 extra parameter A_{lens} , to account for syst's or nonstandard effects $[A_{lens} > 1 \text{ may be typically traded for higher values of the sum of neutrino mass } \Sigma]$

Code: CosmoMC with NO / IO options explicitly included in Σ, via the two mass² differences
 → unphysical spectra of neutrino masses (e.g., Σ = 0) not allowed by construction.
 → expect small NO-IO differences at low Σ, but vanishing at high Σ (degenerate spectrum)

Results on Σ (upper bounds) **and on** $\Delta \chi^2_{IO-NO}$:

TABLE II: Results of the global 3ν analysis of cosmological data within the standard $\Lambda \text{CDM} + \Sigma$ and extended $\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$ models. The datasets refer to various combinations of the Planck power angular CMB temperature power spectrum (TT) plus polarization power spectra (TE, EE), reionization optical depth τ_{HFI} , lensing potential power spectrum (lensing), and BAO measurements. For each of the 12 cases we report the 2σ upper bounds on $\Sigma = m_1 + m_2 + m_3$ for NO and IO, together with the $\Delta \chi^2$ difference between the two mass orderings (with one digit after decimal point). For any Σ , the masses m_i are taken to obey the δm^2 and Δm^2 constraints coming from oscillation data. See the text for more details.

#	Model	Cosmological data set	$\Sigma/\mathrm{eV}~(2\sigma),\mathrm{NO}$	Σ/eV (2 σ), IO	$\Delta\chi^2_{ m IO-NO}$
1	$\Lambda \text{CDM} + \Sigma$	Planck TT + $\tau_{\rm HFI}$	< 0.72	< 0.80	0.7
2	$\Lambda \text{CDM} + \Sigma$	Planck TT + $\tau_{\rm HFI}$ + lensing	< 0.64	< 0.63	0.2
3	$\Lambda \text{CDM} + \Sigma$	Planck TT + $\tau_{\rm HFI}$ + BAO	< 0.21	< 0.23	1.2
4	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, EE $+ \tau_{ m HFI}$	< 0.44	< 0.48	0.6
5	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, EE + $\tau_{\rm HFI}$ + lensing	< 0.45	< 0.47	0.3
6	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, EE + $\tau_{\rm HFI}$ + BAO	< 0.18	< 0.20	1.6
7	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT + $\tau_{\rm HFI}$	< 1.08	< 1.08	-0.1
8	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT + $\tau_{\rm HFI}$ + lensing	< 0.91	< 0.93	0.0
9	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT + $\tau_{\rm HFI}$ + BAO	< 0.45	< 0.46	0.2
10	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT, TE, EE $+ \tau_{ m HFI}$	< 1.04	< 1.03	0.0
11	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT, TE, EE + $\tau_{\rm HFI}$ + lensing	< 0.89	< 0.89	0.1
12	$\Lambda \text{CDM} + \Sigma + A_{\text{lens}}$	Planck TT, TE, EE + $\tau_{\rm HFI}$ + BAO	< 0.31	< 0.32	0.3

 χ^2 profile for NO, IO in representative cases

Grand total: combination of oscillation + nonoscillation data

(with increasingly strong cosmological constraints)

[Case with "conservative" bounds from cosmology]

[RHS plot (inner red curve) shows how a cosmological "claim" of Σ >0 could look like]

[Case with "aggressive" bounds from cosmology]

Grand total of IO-NO differences:

TABLE III: Values of $\Delta \chi^2_{\rm IO-NO}$ from the global analysis of oscillation and non oscillation data (numbered according to the adopted cosmological datasets as in Table II), to be compared with the value 3.6 from oscillation data only [Eq. (9)]. An overall preference emerges for NO, at the level of $1.9-2.1\sigma$.

#	1	2	3	4	5	6	7	8	9	10	11	12
$\Delta\chi^2_{ m IO-NO}$	4.3	3.8	4.4	4.2	3.9	4.4	3.6	3.7	3.8	3.7	3.8	3.9

The statistical significance of possible hints about ordering is currently debated. If they are not fluctuations, expect (fractional) improvements in upcoming years Dedicated projects are planned with reactor, atmospheric, accelerator neutrinos

With "dreamlike" and converging data one could, e.g.

Physics beyond "3 light v" should always be kept in mind, e.g., in neutrinoless double beta decay:

More on known oscillation parameters: sinergy on Δm^2

Each of these three data sets contributes to constrain Δm^2

Supplementary to arXiv:1703.04471

