

The Stereo Experiment

D. Lhuillier - Solvay Workshop

Quest for Sterile ν @ 1eV Mass Scale

Quest for Sterile v @ 1eV Mass Scale

ILL Site

High flux reactor of the ILL

Compact fuel element:

- 58.3 MW
- Ø40 cm × 80 cm
- Highly enriched fuel: ²³⁵U (93%)
- 3-4 cycles of 50 days/year
- Heavy water coolent

Challenging mitigation of the background generated by the reactor and cosmic-rays.

Reactor Sources of Background

- Extraction of neutron beams for neighboring experiments.
- Extensive campaigns of characterization of n and γ sources before shielding design.

- Background of fast and thermal neutrons from side experiments \rightarrow High E γ 's from n-capture on metals: ⁵⁶Fe(n, γ) 7.6 MeV, ...
- Activation: ⁴¹Ar in air ($T_{1/2}$ ~2h, 1.3 MeV), primary water circuit (¹⁶O(n,p)¹⁶N, $T_{1/2}$ ~7s, 6.1 MeV).
- Stray magnetic fields.

Heavy passive shielding added on front and side walls

cea

Stereo Detector

- Compare 6 target cells to measure oscillation-driven distortions in the E_{v_e} spectrum. Mitigate/suppress sensitivity to predicted spectrum depending on analysis scenario.
- Gd-loaded liquid scintillator

Stereo Detector

- 6 identical target cells, Gd-loaded
- Gamma-Catcher outer crow (unloaded) acts as veto against external background and recovery of γ-escapes.
- PMT coupling through 20 cm thick acrylic buffers for homogeneity of det response

Lead

Support structure

Mounting @ ILL – Level C

Flying Neutrino Detector

Water channel 15 mwe overburden

Planning

- Phase I (from Nov 2016): 70 days reactor ON (~1.5 cycles), 25 days OFF
- Detector maintenance during major reactor shutdown this year
- Phase II: taking reactor OFF data since Oct 4, 2017 + 5 more cycles expected by summer 2019.

Cross-Talks Between Cells

- 1TG + 1GC leaking buffers \rightarrow reduced light collection
- Defective glue joints of the separation plates between the target cells \rightarrow lost of air gaps and increase of crosstalk from few to 10-15%.
- Issues fixed for phase-II. Currently running with symmetric and stable detector.
- Development of an energy reconstruction procedure for phase-I analysis.

glue joints + baking

New protection of defective

Calibration

internal calibration (cell 1, 4, 6)external calibration (2D, inside shielding) underneath calibration

- Monitoring of det response with LEDs: p.e. fits, PMT-DAQ linearity in E_v range at sub% level.
- Set of γ and n sources: ⁶⁸Ge, ¹²⁴Sb, ¹³⁷Cs, ⁵⁴Mn, ⁶⁵Zn, ²⁴Na, 1H(*n*, γ), Am-Be, ²⁵²Cf.
- Scan of the detector with ⁵⁴Mn source, twice a week \rightarrow Reference calibration point.

Energy Reconstruction

□ Compare Data and MC at the level of E^{rec}, corrected to first order for light collection effects.

□ Iterative fine-tune of C and LL coefficient for an accurate matching of experimental and simulated E^{rec} distributions from a ⁵⁴Mn source circulated in the calibration tubes.

Energy Reconstruction

n-captures are homogeneously distributed in the target volume and associated γ-rays often share energy deposit between two cells.

 \rightarrow stringent cross-check of the energy reconstruction testing volume effects beyond the reference points of the ⁵⁴Mn source.

n-H capture peak

01/12

15/12 29/12

12/01

26/01

09/02

09/03 Bun Date

01/12/2017

D. Lhuillier - Solvay Workshop

Energy Reconstruction

n-captures are homogeneously distributed in the target volume and associated γ-rays often share energy deposit between two cells.

 \rightarrow stringent cross-check of the energy reconstruction testing volume effects beyond the reference points of the ⁵⁴Mn source.

n-Gd capture peak

01/12

15/12

29/12

12/01

26/01

09/02

Quenching Curve

Non-linear light production in the large dE/dx regime (low E – Bragg peak)

• Fine-tuning of the k_B value in MC in progress to quantify associated systematics.

Neutron Detection Efficiency

Am-Be neutron source in the target cells:

- n-capture time from Am-Be in agreement with IBD candidates
- Relative variations of n efficiency in agreement between MC and data.
- Absolute fraction of Gd-capture fine-tuned in MC → determination of the global n-capture efficiency

Energy reconstruction of neutron capture peaks

Selection of ν Candidates

Topology

- E_{prompt} in GC < 1.1 MeV
- E_{prompt} in cell≠vertex_cell< 0.7 MeV
- E_{delayed} in TG > 1 MeV
- D_{prompt-delayed} < 1.5 cell size.

Prompt-Delayed standard cuts

- Optimal thresholds for E_{prompt} and E_{delayed} in the [1.5 – 2] and [4-5] MeV range respectively.
- ∆T=70µs ≃4*n-capture time

Selection of v Candidates

Online rejection of $\,\mu\text{-induced}$ background

- 100 μs μ veto (6.5% dead time)
- Charge asymmetry: Q_{PMT max}/Q_{cell}<0.5
- Isolation gates
- PSD against p-recoils and stopping μ.

Pulse Shape Discrimination

- Superposition of proton recoils for reactor On and Off periods excludes significant fast-n flux from the reactor.
- Figure of merit ~0.65 for phase-I, improved to 0.70 for phase-II.

Prompt-Delayed Candidates

Accidental background:

- On specifications thanks to the heavy passive shielding and topological cuts.
- Residual contribution measured online with virtually infinite stat precision using many off-time prompt-delayed coincidences.
- Residual offset in the distribution of n-capture time of neutrino candidates is compatible with zero with uncertainty of 0.2% of candidate neutrinos rate.

Prompt-Delayed Candidates

Correlated, cosmic-rays induced background:

- The shallow depth of the experiment induces a dependence of background on atmospheric pressure. Measured online to correct the rates back to a reference pressure of 1024 hPa.
- Larger amount of reactor off data is being acquired to optimize cuts and determine systematics on background stability.

Expected sensitivity

- Remaining oscillation contour is driven by the Neos (+Danss) data.
- Stereo brings complementary measurements based on relative distortions between cell.

Predictions vs Data

 Daya Bay separate measurement of neutrino rates induced by ²³⁵U and ²³⁹Pu fissions → most of the deficit on ²³⁵U only.

Normalization of ILL reference fission spectra

- Ongoing review of the calibration procedure of the reference β spectra,
- Update of e-conversion and fission cross sections
 → increase of ²³⁹Pu prediction?
- Stereo (+ Solid + Prospect) will check pure ²³⁵U norm.

Predictions vs Data

Similar shape distortions observed by several experiments.

- Sensitivity to energy scale distortions
 - G. Mention et al., Phys.Lett. B773 (2017) 307-312

 Stereo: all E_{scale} systematics to be included in a final uncertainty on the calibration coefficient, "à la Bugey".

Conclusions

- Important features of the experiments shown to meet the specifications. Working on cut optimization and systematics of cosmic background subtraction.
- Publication of results from phase-I by spring 2018. Phase-II expected to be completed by mid-2019 (5 more cycles, expendable to 7)
- Stereo addresses the hot issues about fission neutrino spectra:
 - Search for sterile neutrino with relative distortion among identical cells. Little sensitivity to the predicted ²³⁵U spectrum.
 - Check the neutrino deficit from ²³⁵U only.
 - Full E range exploited, complementarity to rate dominated info from other experiments.
- Combined measurements about to answer the question of sterile neutrinos at the eV scale in the next few years. Constraints U_{e4}, connects to LSND anomaly as well.

Thank you

