

GENERATION UPGRADE

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Beyond the Standard Model with Neutrinos and Nuclear Physics

Solvay Workshop November 30, 2017

Darren R Grant

The atmospheric neutrino signal

Oscillations with Atmospheric Neutrinos

- Neutrinos are available over a wide range of energies and baselines
 - Comparison of observations from different baselines and energies is crucial for controlling systematics
 - Essentially, a generalization of the up-down ratio approach

Oscillations with Atmospheric Neutrinos

- Neutrinos are available over a wide range of energies and baselines
 - Comparison of observations from different baselines and energies is crucial for controlling systematics
 - Essentially, a generalization of the up-down ratio approach
- Atmospheric neutrinos oscillating over one Earth diameter have a v_µ survival minimum at ~25 GeV and sensitivity to the mass ordering below ~10 GeV (as well as potentially to CP-violation near ~500 MeV)

Using atmospheric neutrinos to measure the mass ordering

Up to 20% differences in v_{μ} survival probabilities for various energies and baselines, depending on the neutrino mass ordering (NMO)

The IceCube Neutrino Observatory

IceCube Array 86 total strings, including 8 DeepCore strings

IceCube detection principle

CC Muon Neutrino

Neutral Current / Electron Neutrino

CC Tau Neutrino

track (data)

factor of \approx 2 energy resolution < 1° angular resolution at high energies

cascade (data)

- $\approx \pm 15\%$ deposited energy resolution ≈ 10° angular resolution (at
- energies ≥ 100 TeV)

"double-bang" (≋10PeV) and other signatures (simulation)

(not observed yet: τ decay length is 50 m/PeV)

- 78 Strings
 - 125m string spacing
 - 17m DOM spacing

- 78 Strings
 - 125m string spacing
 - 17m DOM spacing

- 78 Strings
 - 125m string spacing
 - 17m DOM spacing

IceCube-DeepCore

- 78 Strings
 - 125m string spacing
 - 17m DOM spacing
- Add 8 strings
 - 75m string spacing
 - 7m DOM spacing

IceCube-DeepCore top view

 10 MeV	 100 MeV	I I GeV	l 10 GeV	 100 GeV	I I TeV	 10 TeV		EeV
				DeepCore			IceCube	

IceCube-DeepCore

Astropart. Phys. Vol.35 Issue 10 (615-624)

- More densely instrumented region at the bottom centre of IceCube
 - Eight special strings plus 12 nearest standard strings (72 m inter-string horizontal spacing (six with 42 m spacing)
 - ~35% higher Q.E. PMTs
 - ~5x higher effective photocathode density
- Deployed mainly in the clearest ice, ${\color{black}\bullet}$ below 2100 m

scatter	<u>'ing</u>	
ment of the second s	IceCube extra veto ca	ap AMANDA
	320 m	Deep Core
		250 m

DeepCore Effective Area and Volume

DeepCore provides an ~25MTon volume with a lower energy threshold that results in O(10⁵) neutrino triggers per year **300 m**

DeepCore Atmospheric Muon Veto

- The cosmic ray muon background (around 10⁶ times the atmospheric neutrino rate)
- Overburden of 2.1 km water-equivalent is substantial, but not as large as at deep underground labs
- However, top and outer layers of lceCube provide an active veto shield for DeepCore
 - ~40 horizontal layers of modules above; 3 rings of strings on all sides
 - Effective µ-free depth much greater

IceCube-DeepCore

- 78 Strings
 - 125m string spacing
 - 17m DOM spacing
- Add 8 strings
 - 75m string spacing
 - 7m DOM spacing

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

Atmospheric neutrinos

DeepCore muon neutrino disappearance

Х

DeepCore muon neutrino disappearance

*arXiv:1707.07081

Best Fit: $\Delta m_{32}^2 = 2.31_{-0.13}^{+0.11} \cdot 10^{-3} \text{eV}^2 \& \sin^2 \theta_{23} = 0.51_{-0.09}^{+0.07}$ 41,599 total events from 2012-2014

The IceCube Neutrino Observatory

The IceCube Neutrino Observatory - Generation 2

Beyond IceCube-DeepCore

- 78 Strings
 - 125m string spacing
 - 17m DOM spacing
- Add 8 strings
 - 75m string spacing
 - 7m DOM spacing

 10 MeV	 100 MeV	I I GeV	I I0 GeV	 100 GeV	I I TeV	 0 TeV		I EeV
				DeepCore			IceCube	

IceCube-DeepCore-PINGU

- 78 Strings
 - 125m string spacing
 - 17m DOM spacing
- Add 8 strings

100 MeV

- 75m string spacing
- 7m DOM spacing
- Add 26 strings (baseline target)

I GeV

10 GeV

PINGU

- ~24m string spacing
- 1.5m DOM spacing

IceCube-DeepCore-PINGU top view

IceCube

• advantages include:

10 MeV

• Use of deployment techniques similar to IceCube would significantly reduce project risk

DeepCore

• Could be quick, dependent on funding (2 years of procurement and fabrication; 2-3 years of deployment) ×

PINGU and the NMO

- Cannot distinguish v from v directly – rely instead on differences in fluxes, cross sections (and kinematics)
- Differences visible in expected atm. muon (v + \overline{v}) rate even with 1 year's data
 - Note: detector resolutions not included here

PINGU and the NMO

- Cannot distinguish v from v directly – rely instead on differences in fluxes, cross sections (and kinematics)
- Differences visible in expected atm. muon (v + \overline{v}) rate even with 1 year's data
 - Note: detector resolutions not included here

PINGU and the NMO

arXiv:1401.2046-2

- Distinctive (and quite different) mass ordering-dependent signatures are visible in both the track and cascade channels
 - Quantity shown is an illustration of statistical significance per bin (as per Akhmedov et al. arXiv:1205.7071)
 - Full MC for detector efficiency, reconstruction, and particle ID included
 - These spaces become the input templates for a full likelihood analysis

PINGU and the NMO - the bottom line

- The confidence determination depends on the true value of θ₂₃ and the ordering
- In most scenarios PINGU achieves a sensitivity of 3 sigma to the neutrino mass ordering in approximately 4 years of data taking (DeepCore and partial deployment years helps reduce this)

Summary and Outlook

- IceCube is currently world's largest neutrino detector; has provided a breakthrough discovery of very high energy neutrinos from astrophysical sources
- DeepCore has demonstrated that the technology of neutrino telescopes can be applied to precision measurements of atmospheric neutrino properties and world-leading dark matter searches
- A robust measurement of the mass hierarchy is within reach using atmospheric neutrinos (INO/ORCA/PINGU)
- IceCube is now preparing for the next generation:
 - IceCube Upgrade (proposals under review):
 - first 7 strings deployed in PINGU volume.
 - includes deployment of prototype optical modules and advanced calibration sources, providing significant enhancements at both low and high energies
 - Gen2 (future facility) includes full high-energy (10x IceCube), PINGU, radio, surface arrays

Backup Slides

PINGU event reconstruction

- Matter effects alter oscillation probabilities for neutrinos or antineutrinos traversing the Earth
 - Maximum effects seen for specific energies and baselines (= zenith angles) due to the Earth's density profile
 - Neutrino oscillation probabilities affected if hierarchy is normal, antineutrinos if inverted
 - Rates of all flavors are affected

PINGU event reconstruction

PINGU Particle ID

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0^L

10

20

True v energy (GeV)

Fraction of events identified as μ

• Distinct signatures observable in both track (v_{μ} CC) and cascade (v_e and $v_\tau CC$, $v_x NC$) channels

