πл

CKM Unitarity and Neutron Beta Decay Measuring V_{ud} in Neutron Beta Decay

Bastian Märkisch Physik-Department Technische Universität München

> CKM Matrix Element V_{ud} Effective CC Couplings

Neutron Lifetime Neutron Decay Corellations

Neutron Beta-Decay

Low energy

$$E_{p,max} = 752 \text{ eV}$$
 $E_{e,max} = 782 \text{ keV}$

Long lifetime $\tau = 880.3(1.1) \text{ s}$ $\tau^{-1} = G_F^2 |V_{ud}|^2 (1 + 3\lambda^2) \frac{f^R m_e^5 c^4}{2\pi^3 \hbar^7}$

Only small, precisely known radiative corrections

Two free parameters within SM (G_F from muon decay)Ratio of coupling constantsAxial-vector g_A und vector g_V Cabibbo-

$$\lambda = \frac{g_A}{g_V}$$

Quark mixing Cabibbo-Kobayashi-Maskawa matrix element

$$V_{ud}$$

$V_{\rm ud}$ from Neutron Decay

from D. Pocanic arXiv:1704.001920

Status today: (using PDG 2016 averages)

 $|V_{ud}| = 0.97585 (18)_{RC} (55)_{T} (146)_{\lambda}$

Future prospects: New experiments: Nab, PERC Penelope / HOPE / TSpect / UCNT / BL3

 $|V_{ud}| = 0.97 \text{xxx} (18)_{\text{RC}} (11)_{\text{T}} (8)_{\lambda}$

Ellipse: $G_V^2 + 3G_A^2 = \frac{\text{const.}}{\tau_n}$ Line: $G_A = \lambda G_V$ ($\lambda < 0$) $|V_{ud}|^2 = \frac{(4908.7 \pm 1.9)s}{\tau(1+3\lambda^2)}$

Marciano, Sirlin PRL 96 (2006)

Near future (this year's results): aCorn, aSpect?, UCNA, PERKEO III

> $|V_{ud}| = 0.97 xxx (18)_{RC} (2 \times 22)_T (2 \times 40)_{\lambda}$ (new avg lifetime & upcoming PERKEO III result)

For comparision: average of 14 nuclei $(0^+ \rightarrow 0^+)$:

> $|V_{ud}| = 0.97417 (18)_{RC}(9)_{NS}(6)_{exp}$ J.C. Hardy & I. S. Towner, PRC91, 025501 (2015)

Neutron Classification

Cold neutrons

moderated in thermal bath (e.g. liquid D₂) E ~ 3 meV, T ~ 40 K, v ~ 800 m/s, λ ~ 0.5nm high flux densities: 2.10¹⁰ s⁻¹ cm⁻² density ~10⁵ cm⁻³ decay rate of up to 10⁶ s⁻¹ per metre (typ. correlation measurements)

Ultracold neutrons (UCN)

E < 300 neV, T ~ 1 mK, v < 7 m/s, λ > 60nm
reflect from surfaces under any incident angle : storable
moderate densities: ~30 cm⁻³
(typ. neutron lifetime, EDM)

and gravity!

Measurement of the neutron lifetime T_n

Storage experiments with UCN

"counting the survivors"

Bastian Märkisch (TUM) | BEYOND 2018 | 29.11.2017

In-beam experiments with cold neutrons "counting the dead"

absolute measurements

Gravitrap at ILL

Previous most precise measurement

Bastian Märkisch (TUM) | BEYOND 2018 | 29.11.2017

New Gravitrap II

Lifetime measurement by fill-and-empty. Massively larger than previous experiment. Running at ILL, Grenoble.

Many systematic studies (coating, losses, temperature) Next: Change from LN temperature to LHe cooling (10K) to reduce wall losses.

> Gravitrap 2 Results (April 2017 at ILL) $\tau_n = 880.5 (0.7)_{sys} (0.8)_{stat^*} s$

UCNτ Magneto-gravitational trap

Operated at LANL

 $y |\mathbf{B}| \approx B_{\text{rem}} (1 - e^{-2\pi d/\lambda}) e^{-2\pi y/\lambda}$

~5500 permanent magnets

Material: C.-Y. Liu EXA2017

UCN_T Magneto-gravitational trap

Material: C.-Y. Liu EXA2017

More Neutron Lifetime Exp.

permanent magnet multipole + SC magnet, 8l volume, new UCN source short term goal 2s, long term < 0.3s *running at Mainz*

HOPE

ПΠ

permanent magnet octupole + SC magnet, 2l volume, new UCN source Goal: 1s -- running at **ILL**, Grenoble

J-PARC TPC Pulsed beam Status: 1% Goal 0.1%

PENeLOPE (TUM)

Magnetic & Gravitational trapping avoids material losses altogether! (HOPE/ILL, Ezhov/ILL, TSpect/Mainz, UCNT/LANL, PENeLOPE/TUM): store only one spin-direction

PENeLOPE aims at a precision of ± 0.1 s

Measure protons and neutrons directly from decay. Also fill-and-empty.

Neutron Decay Correlations

Naviliat-Cuncic and Gonzalez-Alonso, Ann. Phys. 525, 8–9, 600–619 (2013) Dubbers and Schmidt, Rev. Mod. Phys (2012)

Correlation Coefficients

ТШТ

Determination of $\lambda = g_A/g_V$

$A_{PDG} = -0.1184 \pm 0.0010$	1.1%
$B_{PDC} = 0.9807 \pm 0.0030$	0.3%
$C = -0.2377 \pm 0.0026$	1.1%
$a_{PDG} = -0.103 \pm 0.004$	3.9%

Current Neutron Decay Experiments

PERKEO: Measuring Beta Asymmetry A

Electron angular distribution:

Spectrometer PERKEO III

Bastian Märkisch (TUM) | BEYOND 2018 | 29.11.2017

PERKEO III: Pulsed Neutron Beam

ТШП

Sacrifise ~2 orders of magnitude in statistics to address important systematic: background; continuous beam 50.000 s⁻¹; pulsed 250 s⁻¹

PERKEO III: Calibration Fits

ТШП

114 full calibrations in (twice per day)

Simultaneous Fit: $X^2/NDF = 1.0 - 1.3$

Free parameters: Non-linearity, gain, PE + norms

In addition: Hourly drift measurements

~weekly 2D uniformity scan

Green bars indicate fit region

Asymmetry Extraction

PERKEO III Error budget

2

Source	Correction Unce $\Delta A/A (10^{-4}) \Delta A/A$	ertainty \ (10 ⁻⁴)	
Neutron beam			$\lambda(\lambda+1)$
Polarisation	blinded	8 <	$ A = -2 \frac{A(1+2)}{2} $
Spin flip efficiency	blinded		$1+3\lambda^2$
Background			
Deadtime		0.4	
Time variation	-0.8	0.8	Separate Analysis
Chopper Background	-0.9	0.4	
Electrons			
Magnetic mirror effect	blinded	6 -	
Detector			PDG 2016 world average
Non-linearity	-2.0	4.0	
Non-uniformity	-4.8	1.5	ΔΑ/Α-0.4.10°
Stability		3.7	Δλ/λ=1.8·10 ⁻³
Calibration Sources	1.6	0.8	
Rate Dependence of ADCs		1.3	
Undetected Backscattering	5.0	1.5	This measurement:
Lost backscatter energy		1.4	
Theory			$\Delta A/A = 1.0^{\circ} 10^{\circ}$
Radiative Corrections	-10	1	Δλ/λ=5·10-4
Total Systematics		11.8	
Statistics		14.0	Finally, close to being unblinded
Total		18.4	(inconsistencies in indep. analyses

resolved)

AXIAL VECTOR- TO VECTOR COUPLING CONSTANT

Proton Electron Radiation Channel (PERC)

Active volume in a 8 m long neutron-guide, $B_0 = 1.5$ T: phase space density and statistics

Magnetic Filter, $B_1 = 6T$: phase space, systematics $\frac{B_1}{B_0} = 2...12$ (solid angle, backscatter suppression)

Source for specialised spectrometers

Aims to improve results by an order of magnitude: 10⁻⁴. New Observables.

Nucl. Instr. Meth. A **596** (2008) 238 and arXiv:0709.4440

Beam Site Mephisto, FRM II

PERC

"Empty" new hall

Neutron guide: length 40 m, R = 3000 m, m = 2.5Expected intensity equal to PF1B at ILL (2×10¹⁰ s⁻¹cm⁻²) Only very few neighbours: low ambient background Easy ground level access, Fixed installation

Status: All major components of the beam line ready or in production

Bastian Märkisch (TUM) | BEYOND 2018 | 29.11.2017

Reactor Core

PERC: Neutron Spin Control

ПП

O(10⁻⁴) precision requires neutron spin control on the same level:

- polarisation 99.7%: FeSi polarisers Soldner / Petoukhov et al. (ILL)
- spin flipper: AFP 100.00%
- guide in strong magnetic field: only 10⁻⁴ depolarization per bounce allowed
- measurement with ³He spin filters Soldner et al. (ILL)

Production quality (except for the too thin top layer)

Large maximum angle of reflection, high reflectivity

Reduces neutron losses in PERC by factor > 2: background!

(Mildly) backable (>80°C). Beneficial for vacuum conditions.

Hollering (TUM), Rebrova / Schmidt (HD)

Status of the PERC Magnet

Prospects

Tremendous ongoing efforts to improve $V_{ud}% = V_{ud}$ from neutron decay

Lifetime **T**

Potential new average (including UCNtau + Gravitrap 2 results)

T = 879.4(8) s; S = 1.9

Many new experimental results to be expected: UCNtau, HOPE, tauSpect, PENeLOPE, Gravitrap2 Current Goal: O(0.1s)

Ratio of coupling constants λ

New (upcoming) results by aCorn, UCNA, PERKEO III, aSpect Next generation

Nab a 0.1% PERC A 0.05%

Long-term future (next decade): cold beam line **ANNI** at **ESS** (more than order of magnitude More statistics in pulsed beam)

PERC (Proton Electron Radiation Channel) at FRM II / MLZ

Physikzentrum Bad Honnef

Bastlan Märkisch (TUM)

Scientific Organizers: Hartmut Abele, Atominstitut, TU Wien Bastian Märkisch, TU München

Shn und Else Heraeus

experiment	observable	goal uncert.	technique	facility/group
BL2	τ	1 s	cold <i>n</i> beam	NIST
BL3	au	< 0.3 s	cold <i>n</i> beam	NIST
JPARC $ au$	au	< 0.3 s	cold <i>n</i> beam	J-PARC
Gravitrap	au	0.2 s	UCN/material bottle	PNPI and ILL
Ježov	au	0.3 s	UCN/magnetic bottle	PNPI and ILL
HOPE	au	0.5 s	UCN/magnetic bottle	ILL (supertherm. source)
PENELOPE	au	0.1 s	UCN/magnetic bottle	TU Munich
Mainz	au	0.2 s	UCN/magnetic bottle	Mainz TRIGA source
$\mathrm{UCN} au$	au	$\ll 1 s$	UCN/magnetic bottle	LANSCE UCN source
UCNA	A	0.2%	UCN	LANSCE UCN source
PERKEO III	A	0.19%	cold <i>n</i> beam	MLZ (Munich) and ILL
PERC	A	0.05%	cold <i>n</i> beam	Munich
aCORN	a	$\sim 1\%$	cold <i>n</i> beam	NIST
aSPECT	a	$\sim 1\%$	cold <i>n</i> beam	Mainz and ILL
Nab	a	0.1%	cold <i>n</i> beam	SNS

Table 1: Ongoing and planned/funded neutron beta decay measurements, indicating the observable measured, the goal uncertainty level, as well as the general measurement method applied.

from D. Pocanic arXiv:1704.00192v1

Beam Method: NIST Experiment

Bastian Märkisch (TUM) | BEYOND 2018 | 29.11.2017

S. Dewey

ТЛП

Result: 878.5(7)_{stat}(3)_{sys}

Measurement cycle measures UCN spectral dependence

Small final extrapolation

Observables and Statistics

Focus on *non-coincident* measurements due to high count rates:

Polarised neutrons

- β-asymmetry A
- Proton asymmetry C $\triangle C \sim 3 \cdot 10^{-4}$ Neutrino asymmetry **B**
- Weak magnetism **f**_{WM} from β -asymmetry or polarised spectra

Unpolarised neutrons

Correlation a ∧a ~ 5 · 10⁻³ from proton spectrum Fierz coefficient **b** ∧b ~1 · 10-3 from electron spectrum or β-asymmetry Electron helicity h

∆A ~ 5 · 10⁻⁴

△B ~ 1 · 10⁻³

>3σ

Time for 10⁹ events

- 5 hours (unpolarised)
- 1 day polarised 98%
- 2 days polarised 99.7%
- ×25 for pulsed mode

Fierz Interference Term b

Sensitive to scalar and tensor couplings $S = 2\lambda^2 T$

$$b = 2\frac{S - 3\lambda^2 T}{1 + 3\lambda^2}, \ S = \frac{g_S}{g_V}, \ T = \frac{g_T}{g_A}$$

within SM: b = 0

Enters decay rate / spectra and asymmetries:

$$d\Gamma \propto \left(1 + b\frac{m_e}{E_e}\right) \quad A_{exp}(E) \to \frac{A_{exp}(E)}{1 + b\frac{m_e}{E}}$$

Requirement:

Calibration etc. independent of neutron data

Reach of existing PERKEO III data $\Delta b \approx 3 \times 10^{-2}$ from asymmetry. Pending approval by the collaboration.

Extra

