Experimental challenges in extracting the V_{ut} matrix element

CINS

- Germanium detector calibration
- experimental studies: 0⁺ 0⁺ β decay mirror β decay
- future work

Solvay Workshop: Beyond the Standard Model with Neutrinos and Nuclear Physics November 29 – December 1, 2017

• • • Nuclear beta decay

• in general: $ft = rac{k}{G_v^2 < M_F >^2 + G_A^2 < M_{GT} >^2}$

• for 0⁺ \rightarrow 0⁺ transitions: only vector current due to selection rules $ft = \frac{k}{G^2 < M_E >^2}$

- experimental quantities: precise measurements of masses of parent and daughter, half-life, branching ratio
 → 0.1 %
- correct for other interactions:

$$\begin{split} \mathcal{F}t &= \mathbf{ft}(1+\delta_{R}')(1+\delta_{NS}-\delta_{C}) = \frac{k}{\mathbf{G}_{v}^{2} < \mathbf{M}_{F} >^{2}(1+\Delta_{R}^{v})} \\ \mathcal{F}t &= \mathbf{ft}(1+\delta_{R}')(1+\delta_{NS}-\delta_{C}) = \frac{k}{\mathbf{2G}_{v}^{2}(1+\Delta_{R}^{v})} \quad \text{for T=1} \end{split}$$

 many transitions: validate corrections, test CVC, determine V_{ud} matrix element, test CKM matrix unitarity, test scalar contributions...

Germanium detector calibration

close to 100% g.s. to g.s. transition

low precision needed for non-analog transitions

• Super-allowed Fermi transitions for T₇ = -1 440 ms 0^{+} 0.20 3271,2 MT Q_{FC}=6743 <40 fs 1+ 3341.7 0.29% 4.2 1562.9 44 fs 1+ 1698.3 21.0% 3.4 7.0 ps -458.7 2.7% 4.8 T=1 3.5 130.4 76.1% 923.9 ms 7.636 m

- many decay channels open
- strong non-analog transitions
- high precision of γ efficiency needed \rightarrow 0.1%

Calibration of germanium detector

X-ray

¹³⁷Cs

- $\Delta \varepsilon_{rel} = 0.1\%$, $\Delta \varepsilon_{abs} = 0.15\%$
- calibration programme of a **HP Ge detector:**
- x-ray photography of detector
- scan of the crystal at CSNSM
- source measurements
- MC simulations: CYLTRAN, GEANT4

Relative detection efficiency: ²⁴Na, ²⁷Mg, ⁴⁸Cr, ⁵⁶Co, ⁶⁰Co, ⁶⁶Ga, ⁷⁵Se, ⁸⁸Y, ¹³³Ba, ¹³⁴Cs, ¹³⁷Ce, ¹⁵²Eu, ¹⁸⁰Hf, ²⁰⁷Bi Absolute detection efficiency: ⁶⁰Co Peak/total: ²²Na, ⁴¹Ar, ⁵¹Cr, ⁵⁴Mn, ⁵⁷Co, ⁵⁸Co, ⁶⁵Zn, ⁸⁵Sr ...ISOLDE, IPNO sources

• • Additional calibration of germanium detector: preliminary

• • Peak-to-total

• • Escape peaks and simulation

• • • Stability of efficiency

0⁺ - 0⁺ β decay: ³⁸Ca

Super-allowed Fermi transitions for T_z = -1

- many decay channels open
- strong non-analog transitions
- high precision of γ efficiency needed \rightarrow 0.1%

• • ³⁸Ca production at GANIL/LISE3

• • ³⁸Ca: result

• half-life:

0^+ - 0^+ β decay: ³⁰S

• • ³⁰S production at GANIL/LISE3

• • • ³⁰S: very preliminary result

Physics beyond the standard model: ¹⁰C at ISOLDE

• • • $0^+ \rightarrow 0^+$ decays: limits on exotic currents

standard model assumption: only vector current

- limit on scalar current from term in f function: (1+b_f * γ_1 / <E>) from β decay: $b_F = -0.0028 \pm 0.0026$
- →→ improve on low-Z nuclei

Hardy & Towner, 2015

• limit on scalar currents: $b_F = Re((C_s + C'_s) / C_v) = 0.0026(42)$ (90% CL) Severijns et al.

• • $0^+ \rightarrow 0^+$ decays: limits on exotic currents

• • • $0^+ \rightarrow 0^+$ decays: limits on exotic currents

standard model assumption: only vector current

- limit on scalar current from term in f function: (1+b_f * γ_1 / <E>) from β decay: $b_F = -0.0028 \pm 0.0026$
- →→ improve on low-Z nuclei

Hardy & Towner, 2015

• limit on scalar currents: $b_F = Re((C_s + C'_s) / C_v) = 0.0026(42)$ (90% CL) Severijns et al.

• • • $0^+ \rightarrow 0^+$ decays: ¹⁰C error budget

- BR by far largest error
- two precise measurements:
 - Savard et al.: 1.4625(25)% (PRL 74 (1995) 1521)
 - Fujikawa et al.: 1.4665(38)% (PLB 449 (1999) 6)
 - measurements with Ge multi-detector array

our approach:

branching ratio measurement with our highly calibrated HPGe

• • • ¹⁰C/¹⁹Ne decay scheme

Physics beyond the standard model: ¹⁰C at ALTO

• • Future experiment: ¹⁰C with nu-ball @ ALTO

A hybrid LaBr3-Ge array for fast timing spectroscopic studies at the IPN Orsay

J.N. Wilson¹, P.H.Regan^{2,3}, G. Georgiev⁴, I. Matea¹, D. Verney¹, M. Lebois¹, P. Halipre¹,
L. Qi¹, A. Gottardo¹, J. Ljungvall⁴, Zs.Podolyak², S.M.Judge^{2,3}, R. Shearman^{2,3}, R. Carroll²,
M. Rudigier², A.Pearce³, G.Lorusso^{2,3}, A.M. Bruce⁵, N. Marginean⁶, T. Kroell⁷, S. Ilieva⁷,
A. Ignatov⁷, G. Fernandez⁷, V. Werner⁷, L.M. Fraile⁸, V. Vedia⁸, J. Jolie⁹, J.M. Regis⁹,
W. Korten¹⁰, J.F. Smith¹¹, P.M. McKee¹¹, E. Parr¹¹, M. Smolen¹¹, S.Lalkovski^{2,12},
S. Kisyov¹², A. Görgen¹³, S.Siem¹³, K. Hadynska-Klek¹³, E. Sahin¹³A. Oberstedt^{1,14},
S. Oberstedt¹⁵

¹Institut de Physique Nucléaire Orsay, F- 91406 Orsay, France ²Department of Physics, University of Surrey, UK ³AIR Division, National Physical Laboratory, Teddington, UK ⁴CSNSM Orsay, France ⁵University of Brighton, UK ⁶IFIN-HH. Maguerele, Bucharest, Romania ⁷TU Darmstadt, Germany ⁸U. Complutense, Madrid, Spain ⁹IFK- Köln, Germany ¹⁰CEA Saclay, France ¹¹University of West of Scotland, Paisley, UK ¹²University of Sofia, Bulgaria ¹³University of Sofia, Bulgaria ¹⁴Chalmers University, Sweden ¹⁵European Commission JRC-IRM, Geel, Belgium

Thu Aug 31 18:56:50 2017

Scientific Manager: M. Lebois Technical Manager: B. Genolini

• • Future experiment: nu-ball @ ALTO nu-ball Efficiency for Ge clover array Efficiency for LaBR₃ array 0.07 Individual total LaBr₃ 0.1 add-back 0.06 0.05 0.08 0.04 0.06 0.03 0.04

...scheduled for March 2017

Branching ratio and half-life at ISOLDE

Branching ratio of ²²Mg at ISOLDE 3.857 s (140 6.655 + 12.5 + 141) 0+ 25 Q_{FC}=4785.5 13 fs 1+ **1936.9** 5.8% 3.4 20 uncertainty (x 10⁻⁴) 19.3 ps <u>0+: T=1</u> 244 ns <u>1+</u> **657.00 583.03 54.0% 40.2%** <u>3.5</u> 3.7 15 2.6019 y 3+ 0 ²²Na → Extent high-precision 10 efficiency calibration T_{1/2} below 100 keV B.R. 5 → ISOLDE rates: 8.0E+06 pps δ'_R ➔ Purification with LIST $\delta_{\rm C}$ - $\delta_{\rm NS}$ → Purification with ²²Mg **ISOLTRAP MR-TOF**

... spring 2018

Mirror β decays

• • Nuclear mirror beta decay

$${f r}$$
 in general: ${f ft} = {k \over G_v^2 < M_F >^2 \ + \ G_A^2 < M_{GT} >^2}$

• for mirror transitions: vector and axial-vector currents

 experimental quantities: precise measurements of masses of parent and daughter, half-life, branching ratio, mixing ratio

 many transitions: validate corrections, test CVC, determine V_{ud} matrix element, test CKM matrix unitarity...

Mirror β decays: ²³Mg, ²⁷Si, ³⁷K

Experiment JYFL2013: ²³Mg & ²⁷Si

T_{1/2} = 1.23635(88) s

BR = 97.96(14) %

• • Nuclear mirror beta decay: improvements

• • • Conclusions

• High-precision Germanium detector is available (E γ <100 keV)

 \rightarrow Tz = -1 nuclei can be addressed: ¹⁸Ne, ²²Mg, ²⁶Si, ⁴²Ti

• Big potential for nuclear mirror decays

need for high-precision GT-F mixing ratio measurements

- Search for physics beyond standard model: ¹⁰C
- Improve theoretical corrections.... work on-going at CENBG (N. Smirnova et al.)

• • • Conclusions

• High-precision Germanium detector is available

 \rightarrow Tz = -1 nuclei can be addressed: ¹⁸Ne, ²²Mg, ²⁶Si, ⁴²Ti

• Big potential for nuclear mirror decays

need for high-precision GT-F mixing ratio measurements

- Search for physics beyond standard model: ¹⁰C
- Improve theoretical corrections.... work on-going at CENBG (N. Smirnova et al.)

Thanks for your attention

Collaborations: CENBG, GANIL, TRIUMF, Univ. of Guelph, JYFL