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Motivation
Why Λ < 0?

▶ Anti-de Sitter spacetimes are ubiquitous in nowadays
theoretical physics

▶ Surge of attention due to AdS/CFT correspondence

▶ Conjecture: Quantum gravity on asymptotically AdS
spacetimes in d dimensions is dual to a conformal field theory
in d − 1 dimensions
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Motivation
Why Λ < 0?

▶ Many classical properties of general relativity with Λ < 0
deserve attention

▶ One of them is the mass
▶ It is only known in special cases whether the mass is bounded

from below

P. T. Chruściel, E. Delay, RW arXiv:2112.00095 [math.DG]:

▶ proof of existence of certain vacuum initial data sets for GR
with Λ < 0 and negative mass

▶ previously unknown
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Outline

1. Theorem and Motivation

2. Solutions of Interest

3. Mass

4. Sketch of the Proof
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1. Theorem and Motivation

Theorem (P. T. Chruściel, E. Delay, RW)

There exist 3-dimensional conformally compact asymptotically
locally hyperbolic Riemannian manifolds (M, g) without boundary
at finite distance with scalar curvature

R(g) = −6

with connected conformal boundary at infinity of arbitrarily high
genus and negative total mass.

▶ Metric approaches a hyperbolic metric at large distances

▶ No interior boundary, only conformal boundary at infinity

▶ Time-symmetric (Kij = 0) vacuum initial data with negative
cosmological constant
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1. Theorem and Motivation

▶ Hyperbolic space appears as constant time slice of Anti-de
Sitter

g3+1 = −(r2 + 1)dt2 +
dr2

r2 + 1
+ r2(dθ2 + sin θ2dϕ2)

▶ Statement about initial data sets for asymptotically locally
AdS spacetimes

▶ Theorem provides better understanding of positivity of mass
for asymptotically locally hyperbolic spaces
▶ If asymptotically locally AdS spacetime contains spacelike

hypersurface that satisfies requirements needed for theorem,
theorems carry over to statements about AdS spacetime

▶ Potential use of bounds in AdS/CFT
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2. Solutions of Interest



Hyperbolic Mass
and Gluings of
Initial Data

Raphaela Wutte

2. Birmingham-Kottler metrics
Static Solutions of the Vacuum Einstein Equations with Λ < 0

g3+1 = −V 2(r)dt2 +
1

V 2(r)
dr2 + r2hk , V 2(r) = r2 + k − 2mc

r

where hk is a t- and r -independent Einstein metric on a
2-dimensional, orientable compact manifold with

R(hk) = 2k , k = {−1, 0, 1}
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2. Birmingham-Kottler metrics
Static Solutions of the Vacuum Einstein Equations with Λ < 0

g3+1 = −V 2(r)dt2 +
1

V 2(r)
dr2 + r2hk , V 2(r) = r2 + k − 2mc

r

where hk is a t- and r -independent Einstein metric on a
2-dimensional, orientable compact manifold with

R(hk) = 2k , k = {−1, 0, 1}

▶ R(h1) = 2 : Riemann sphere with h1 = dθ2 + sin θ2dϕ2

▶ R(h0) = 0 : flat torus with h0 = dθ2 + dϕ2

▶ R(h−1) = −2 : higher-genus surface h−1 = dθ2 + sinh θ2dϕ2

Remark: BK metrics also referred to as Schwarzschild-AdS
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2. Birmingham-Kottler metrics
Static Solutions of the Vacuum Einstein Equations with Λ < 0

g3+1 = −V 2(r)dt2 +
1

V 2(r)
dr2 + r2hk , V 2(r) = r2 + k − 2mc

r

where hk is a t- and r -independent Einstein metric on a
2-dimensional, orientable compact manifold with

R(hk) = 2k , k = {−1, 0, 1}

▶ mc ̸= 0 are nakedly singular unless V (r0) = 0 for some r0 > 0,
if V (r) has positive zero → black hole solutions

▶ mc = 0, k = 1 global AdS spacetime, t = const. global
hyperbolic space

▶ mc = 0: locally AdS spacetime, t = const. locally hyperbolic
space
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2. Birmingham-Kottler metrics
Static Solutions of the Vacuum Einstein Equations with Λ < 0

g3+1 = −V 2(r)dt2 +
1

V 2(r)
dr2 + r2hk , V 2(r) = r2 + k − 2mc

r

where hk is a t- and r -independent Einstein metric on a
2-dimensional, orientable compact manifold with

R(hk) = 2k , k = {−1, 0, 1}

▶ In space-dimension 3 asymptotically BK equivalent to
asymptotically locally hyperbolic

▶ Mass E ∝ mc , measured relativ to ḡ = g(mc = 0)
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2. Birmingham-Kottler to Horowitz-Myers
Static Solutions of the Vacuum Einstein Equations with Λ < 0

▶ Consider a toroidal Birmingham-Kottler metric

g3+1 = −V 2
k=0(r)dt

2 +
1

V 2
k=0(r)

dr2 + r2(dθ2 + dψ2) ,

V 2
k=0(r) = r2 − 2mc

r

▶ Wick rotate t → iθ, θ → it

g3+1 = +V 2
HM(r)dθ2 +

1

V 2
HM(r)

dr2 + r2(−dt2 + dψ2) ,

V 2
HM(r) = r2 − 2mc

r

⇒ Novel solution to vacuum Einstein equations as noticed by
Horowitz and Myers
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2. Horowitz–Myers Metric
Static Solution of the Vacuum Einstein’s Equations with Λ < 0

g3+1 = V 2
HM(r)dθ2 +

1

V 2
HM(r)

dr2 + r2(−dt2 + dψ2)

V 2
HM(r) = r2 − 2mc

r
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2. Horowitz–Myers Metric
Static Solution of the Vacuum Einstein’s Equations with Λ < 0

g3+1 = V 2
HM(r)dθ2 +

1

V 2
HM(r)

dr2 + r2(−dt2 + dψ2)

V 2
HM(r) = r2 − 2mc

r

▶ For mc > 0, function VHM(r) vanishes at r = r0 = (2mc)
1/3

▶ Choose period of θ such that no conical singularity at r = r0

θ =
2

3(mc)1/3
ϕ

where ϕ is 2π-periodic

▶ Period of θ depends on mc → conformal infinity changes if
mc changes
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Static Solution of the Vacuum Einstein’s Equations with Λ < 0

g3+1 = V 2
HM(r)dθ2 +

1

V 2
HM(r)

dr2 + r2(−dt2 + dψ2)

V 2
HM(r) = r2 − 2mc

r

▶ Mass E ∝ −mc when measured with respect to toroidal BK
metric with mc = 0
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2. Horowitz–Myers Metric
Static Solution of the Vacuum Einstein’s Equations with Λ < 0

g3+1 = V 2
HM(r)dθ2 +

1

V 2
HM(r)

dr2 + r2(−dt2 + dψ2)

V 2
HM(r) = r2 − 2mc

r

▶ Mass E ∝ −mc when measured with respect to toroidal BK
metric with mc = 0

▶ Conjecture (1998): Horowitz-Myers metric minimizes energy if
you prescribe conformal structure at infinity
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2. Horowitz–Myers Metric
Static Solution of the Vacuum Einstein’s Equations with Λ < 0

g3+1 = V 2
HM(r)dθ2 +

1

V 2
HM(r)

dr2 + r2(−dt2 + dψ2)

V 2
HM(r) = r2 − 2mc

r

▶ Mass E ∝ −mc when measured with respect to toroidal BK
metric with mc = 0

▶ Conjecture (1998): Horowitz-Myers metric minimizes energy if
you prescribe conformal structure at infinity

▶ Conjecture due to AdS/CFT considerations
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Initial Data

▶ For the rest of the talk we work on the level of initial data
(M, gij ,Kij) for GR satisfying vacuum constraint equations

R(g) = 2Λ + KijK
ij − (K i

i )
2

DjK
j
i − DiK

j
j = 0

▶ In the following, consider time-symmetric case Kij = 0, then

R(g) = 2Λ = −n(n − 1)

▶ For n = 3
R(g) = −6
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3. Mass
Definition

▶ Often done using space-time methods

▶ Also possible using initial data: if g approaches
Birmingham-Kottler metric with mc = 0 1

E = − 1

16π
lim

R̃→∞

∫
r=R̃

D j(V )

(
R i

j −
R

3
δi j

)
dSi

▶ R i
j Ricci tensor of g

▶ g is the spatial part of the metric
▶ Background enters through function V

V =
√

r2 + k , k ∈ {−1, 0, 1}

1dSi =
√
detg ∂i⌋dr ∧ dθ ∧ dψ
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3. Mass
Positivity of Mass for Negative Cosmological Constant

▶ Negative mass solutions in toroidal case: Horowitz-Myers
metric
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4. Sketch of the Proof
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4. Sketch of the Proof
Reminder of Theorem

Theorem (P. T. Chruściel, E. Delay, RW)

There exist 3-dimensional conformally compact asymptotically
locally hyperbolic Riemannian manifolds (M, g) without boundary
at finite distance with scalar curvature

R(g) = −6

with connected conformal boundary at infinity of arbitrarily high
genus and negative total mass.

Idea:

▶ Glue together two HM initial data sets at infinity

▶ Each initial data set has negative mass

▶ Expectation: gluing results in initial data set with negative
mass
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4. Sketch of the Proof
Idea: glue together two HM metrics at infinity

Theorem (Isenberg, Lee & Stavrov 2010,

Chruściel, Delay
2015

)

Given two asymptotically locally hyperbolic manifolds with
constant scalar curvature (or general relativistic vacuum initial
data sets) one can construct a new one by making a connected
sum at the conformal boundary at infinity.
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4. Sketch of the Proof
Idea: glue together two HM metrics at infinity

Theorem (Isenberg, Lee & Stavrov 2010, Chruściel, Delay
2015)

Given two asymptotically locally hyperbolic manifolds with
constant scalar curvature (or general relativistic vacuum initial
data sets) one can construct a new one by making a connected
sum at the conformal boundary at infinity. The construction can
be localized.

glue
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4. Sketch of the Proof
Idea: glue together two HM metrics at infinity

zoom
∂U1,ε

∂U1,2ε

∂M1

▶ Metric is exactly hyperbolic inside red half-ball

▶ Outside blue half-ball metric is exactly what it was before
(e.g. Horowitz-Myers in our case)

▶ Hyperbolic metric can be smoothly extended

glue
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4. Sketch of the Proof
How does the Mass change?

glue

▶ Initial mass defined with respect to locally hyperbolic space
with toroidal conformal infinity, final mass defined with respect
to locally hyperbolic space with genus-2 conformal infinity
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4. Sketch of the Proof
How does the mass change?

▶ Initial background: locally hyperbolic space with toroidal
conformal infinity

b =
dr2

r2
+ r2 (dθ2 + dφ2)︸ ︷︷ ︸

h0

▶ Final genus-2 background: locally hyperbolic space with
genus-2 conformal infinity

b̄ =
dr̄2

r̄2 − 1
+ r̄2 (d θ̄2 + sinh2(θ̄)dφ̄2)︸ ︷︷ ︸

h−1

▶ On each half h−1 = eωh0
▶ Inital mass is defined with respect to b, final mass is defined

with respect to b̄

▶ One can show that r̄ = e−
ω
2 r + subleading
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4. Sketch of the Proof
How does the mass change?

▶ A few slides before we had

Egeneric = − 1

16π
lim

R̃→∞

∫
r=R̃

D j(V )

(
R i

j −
R

3
δi j

)
dSi

with
V =

√
r2 + k , k ∈ {−1, 0, 1}

▶ Mass of the initial torus

E = − 1

16π
lim

R̃→∞

∫
r=R̃

D j(r)

(
R i

j −
R

3
δi j

)
dSi

▶ Mass of each half of the glued manifold

E = − 1

16π
lim

R̃→∞

∫
r̄=R̃

D j(
√
r̄2 − 1)

(
R i

j −
R

3
δi j

)
dSi

= − 1

16π
lim

R̃→∞

∫
r=R̃

D j(e−ω/2r)

(
R i

j −
R

3
δi j

)
dSi
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4. Sketch of the Proof
Gluing tori and controlling the mass

glue

▶ Mass on each half of the manifold depends upon the gluing
region

▶ Sign of the final mass a priori unclear as both the metric and
the conformal factor ω depend on the gluing region ϵ

E = − 1

16π
lim

R̃→∞

∫
{r=R̃}×T 2\D(p,ϵ)

D j(e−ω/2r)

(
R i

j −
R

3
δi j

)
dSi

▶ ϵ small needed
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4. Sketch of the Proof
Taking the limit ϵ→ 0

Theorem (P. T. Chruściel, E. Delay, RW)

Upon gluing two Horowitz-Myers metrics with coordinate mass mc ,
eω → eω0 of a punctured torus as ϵ→ 0 with

E = − 1

8π
mc

∫
T 2

e−ω0/2dµh0

▶ It follows that if ϵ is chosen small enough, gluing of two
Horowitz-Myers metrics gives genus-2 metrics with negative
mass
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4. Sketch of the Proof

▶ One obtains higher-genus metrics with negative mass by
iterating the construction
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Summary

Theorem (P. T. Chruściel, E. Delay, RW)

There exist 3-dimensional conformally compact asymptotically
locally hyperbolic Riemannian manifolds (M, g) without boundary
at finite distance with scalar curvature

R(g) = −6

with connected conformal boundary at infinity of arbitrarily high
genus and negative total mass.
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What happens to geometry in limit ϵ → 0

▶ Necks become thinner and longer as ϵ→ 0

▶ As ϵ→ 0 tori seperate: two punctured tori
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Topological instability?

▶ Use construction to lower the total mass of a asymptotically
locally hyperbolic manifold by a localized deformation near the
conformal boundary at infinity

▶ This is at the cost of changing the topology at conformal
infinity

▶ Possible instability? → needs further investigation
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Thank You!


