Infinite-dimensional symmetries of the gauge theories in the light front

Olivera Mišković

Pontificia Universidad Católica de Valparaíso, Chile

Collaborators: Oriana Labrin (PUCV), Hernán González (UA) [arXiv: 2304.03211]

Progress on gravitational physics 45 years of Belgian-Chilean collaboration

ULB, Brussels, April 11-14, 2023

1 / 34

We analyse symmetries in electromagnetism and Yang-Mills theory using Hamiltonian formalism in the null foliation

2 / 34

- 1 Infrared structure of gauge theories
- 2 Hamiltonian analysis of electromagnetism in the null foliation
- 4 Extension to Yang-Mills theory
- **5** Discussion

3 / 34

イロト イポト イヨト イ

IR region of theories with massless particles in asymptotically flat spaces

4 / 34

Image: A matrix and a matrix

- ∢ ⊒ ▶

Motivation

• Hamiltonian treatment of asymptotic symmetries

[Bondi, van der Burg, Metzner 1962; Sachs 1962]

- **BMS symmetry** infinite-dimensional asymptotic symmetry at the null boundary of 4D asymptotically flat spacetimes
- Celestial holography
- Duality between massless 4D asymptotically flat spacetimes and 2D CFT on the celestial sphere
- Asymptotic symmetries in electromagnetism and Yang-Mills theory
- 2D realization of soft symmetries in electromagnetism

[He, Mitra, Porfyriadis, Strominger 2014; Nande, Pate, Strominger 2018]

- Extension to Yang-Mills theory

[Strominger 2014; He, Mitra, Strominger, 2016]

5 / 34

Infrared structure of gauge theories

Vacuum degeneracy in gauge theories ($\omega \rightarrow 0$)

 \Leftrightarrow Enhancement of symmetries at the boundary of flat spacetime $(r \to \infty)$

- Goldstone modes, dominant low-energy excitations
- Vacuum state $e^{S[\eta]} |A\rangle = |A + \eta\rangle \iff \delta |A\rangle = \eta$

Spontaneous symmetry breaking, J. Lykken, M. Spiropulu, The future of the Higgs boson, Physics Today 66, 12, 28 (2013)

\Rightarrow Interest in boundary dynamics of massless particles \Rightarrow

Infrared structure of gauge theories

What to expect at the null infinity?

- Realisation of a canonical analysis in a null foliation [Dirac 1949]
- The induced metric on a null hypersurface is degenerate
- Double-null foliation = 2 + 2 formalism in GR, complicated symplectic structure, difficult to quantize [d'Inverno, Smallwood 1980]
- Ashtekar variables in GR, simpler symplectic structure, but still difficult to quantize [Ashtekar 1986, 1987]

Peculiarities of the light-front dynamics in the Minkowski space

- Light-cone coordinates $x^{\pm} = \frac{x^0 \pm x^3}{\sqrt{2}}$; Time coordinate $u = x^-$
- Increased number of isometries of the surface u = const. compared to $t = x^0 = \text{const.}$ (one more because of degenerated direction)
- **Dispersion equation** for a massive scalar

$$p^2 = m^2 \quad \Rightarrow \text{Energy } E = p^- = \frac{(p^\perp)^2 + m^2}{2p^+}$$

 \Rightarrow Consequences: $p^+ > 0$ and trivial physical vacuum, $p_{\rm vac}^{\mu} = 0$

Infrared structure of gauge theories

- Nontrivial effects on the light front are contained in the zero modes [Yamawaki 1998]
- Boundary conditions in the light front formalism
- Light-cone actions are first order in velocities [Steinhardt 1980] Kinetic term $T = -\frac{1}{2} (\partial \phi)^2 = \dot{\phi} \partial_+ \phi - (\nabla_\perp \phi)^2$
 - \Rightarrow The canonical momentum $\pi = \partial_+ \phi$ is not invertible
- ★ New constraint $\chi\equiv\pi-\partial_+\phipprox 0$
- ★ It does not commute with itself, $\{\chi(x), \chi(x')\}_{u=u'} = -2\partial_+\delta(x-x')$
 - \Rightarrow Reduction of the phase space: elimination $\chi = 0$
 - Global zero mode in massless theories [Alexandrov, Speziale 2015]
- A massless particle worldline is parallel to the light front hypersurface, not determined by the initial data
- It has vanishing energy, $E = p^- \rightarrow 0$, $p^\perp = 0$ (soft particles)

Global zero mode

Global zero mode, First order gravity on the light front, S. Alexandrov, S. Speziale, Phys.Rev.D 91 (2015) 6, 064043

◆□> ◆□> ◆注> ◆注>

E

Null foliated reference frame

• Minkowski metric in D = 4 in the spherical coordinates (t, r, y^A)

 $M_4: ds^2 = -dt^2 + dr^2 + r^2 d\Omega^2$

 \mathbb{S}^2 : $\mathrm{d}\Omega^2 = \gamma_{AB}(y) \,\mathrm{d}y^A \mathrm{d}y^B$

• Time coordinate $u = t - \epsilon r$, $-1 \le \epsilon \le 1$

 $\epsilon = 1$ retarded time

- $\epsilon = 0$ proper time of a massive particle
- $\epsilon = -1$ advanced time

Stereographic projection, T. Apostol, Mathematical Analysis (1973)

イロト 不得下 イヨト イヨト

• Coordinates on \mathbb{S}^2 : stereographic projection $(\theta, \varphi) \to y^A = (z, \bar{z})$

$$z={
m e}^{{
m i}arphi}\cotrac{ heta}{2}$$
 , $ar z={
m e}^{-{
m i}arphi}\cotrac{ heta}{2}$

3

• Minkowski metric $\mathfrak{g}_{\mu\nu}$ in the coordinates $x^{\mu} = (u, r, y^{A})$:

 $ds^{2} = -du^{2} - 2\epsilon \, dudr + (1 - \epsilon^{2}) \, dr^{2} + r^{2} d\Omega^{2}$

Jacobian $\sqrt{\mathfrak{g}} = r^2 \sqrt{\gamma}$

• S² metric in the complex coordinates

$$\gamma_{AB} = \begin{pmatrix} 0 & \gamma_{z\bar{z}} \\ \gamma_{z\bar{z}} & 0 \end{pmatrix}$$
$$\sqrt{\gamma} = \gamma_{z\bar{z}} = \frac{2}{(1+z\bar{z})^2}$$

• Electromagnetic action in the background $\mathfrak{g}_{\mu\nu}$

$$I[A] = -rac{1}{4e^2}\int \mathrm{d}^4 x\,\sqrt{\mathfrak{g}}\,F^{\mu
u}F_{\mu
u} \qquad (F_{\mu
u}=\partial_\mu A_
u - \partial_
u A_\mu)$$

• Canonical momenta $\pi^{\mu} = -\frac{1}{e^2} \sqrt{\mathfrak{g}} F^{\mu\mu}$

In components:

$$\begin{aligned} \pi^{u} &= 0 & \dot{A}_{u} \times \\ \pi^{r} &= \frac{r^{2}}{e^{2}} \sqrt{\gamma} F_{ur} & \dot{A}_{r} & \sqrt{} \\ \pi^{A} &= -\frac{1}{e^{2}} \sqrt{\gamma} \gamma^{AB} \left[(\epsilon^{2} - 1) F_{uB} - \epsilon F_{rB} \right] \dot{A}_{B} ? \end{aligned}$$

イロト イポト イヨト イ

- The limit $\epsilon^2
 ightarrow 1$ is discontinuous
- The action in the light-cone $(\epsilon^2=1)$ has an additional constraint

In the Bondi reference frame ($\epsilon^2 = 1$)

• Primary constraints

$$\pi^{u} pprox 0$$
, $\chi^{A} \equiv \epsilon \pi^{A} - rac{1}{e^{2}} \sqrt{\gamma} \gamma^{AB} F_{rB} pprox 0$

(日) (同) (三) (

• Total Hamiltonian [Dirac 1964]

$$\mathcal{H}_{T} = \frac{e^{2}(\pi^{r})^{2}}{2r^{2}\sqrt{\gamma}} + \frac{e^{2}\tilde{\pi}_{A}\pi^{A}}{2\sqrt{\gamma}} + \frac{\sqrt{\gamma}}{4e^{2}r^{2}}\tilde{F}^{AB}F_{AB} - A_{u}\partial_{i}\pi^{i} + \lambda_{u}\pi^{u} + \lambda_{A}\chi^{A}$$

- Hamiltonian multipliers A_u , λ_u , λ_A incorporate constraints
- Matching conditions
- Two Hamiltonians on the future ($\epsilon = +1$) and past ($\epsilon = +1$) light cones satisfy the antipodal matching conditions near the boundary i^0 :

$$\mathcal{H}_{\mathcal{T}}|_{\mathcal{J}^{-}_{+}} = \mathcal{H}_{\mathcal{T}}|_{\mathcal{J}^{+}_{-}}$$

Auxiliary symplectic matrix

$$\left\{\chi^{A}(x),\chi^{B}(x')\right\} = \Omega^{AB}(x,x') \equiv -\frac{2\epsilon}{e^{2}}\sqrt{\gamma}\gamma^{AB}\partial_{r}\delta^{(3)}$$

- If Ω^{AB} is not invertible: χ^A are **first class** (generate symmetries)
- If Ω^{AB} is invertible: χ^A are second class (eliminate redundant fields)

One possibility

- $\Omega^{AB}~$ is invertible because γ^{AB} is invertible $\Rightarrow \chi^A$ are second class
- Reduced phase space $\chi^{\mathcal{A}}=0$ [Goldberg 1991, Majumdar 2022]

Second possibility

- Ω^{AB} is invertible, but its inverse is not unique
- Ω^{AB} is infinite-dimensional matrix and it has zero modes

$$\int \mathrm{d}^3 x' \,\Omega^{AB} \, V'_B = -\frac{2\epsilon}{e^2} \,\sqrt{\gamma} \gamma^{AB} \partial_r \, V_B = 0 \quad \Rightarrow \quad V_B = V_B(y)$$

Symplectic matrix

$$\left\{\chi^{A}(x),\chi^{B}(x')\right\} = \Omega^{AB}(x,x') \equiv -\frac{2\epsilon}{e^{2}}\sqrt{\gamma}\gamma^{AB}\partial_{r}\delta^{(3)}$$

- If Ω^{AB} invertible: χ^A are **first class** (generate symmetries)
- If Ω^{AB} not invertible: χ^A are second class (eliminate redundant fields)

One possibility

- Ω^{AB} is invertible because γ^{AB} is invertible $\Rightarrow \chi^A$ are second class
- Reduced phase space $\chi^{\mathcal{A}}=0$ [Goldberg 1991, Majumdar 2022]

Other possibility

- Ω^{AB} is invertible, but its inverse is not unique
- Ω^{AB} is infinite-dimensional matrix and it has zero modes

 $\Rightarrow \chi^{A}_{(0)}(y)$ is first class constraint (*r*-independent part of the constraint)

15 / 34

Consistency conditions

• Conservation of constraints during their evolution

 $\dot{\pi}^{u} = 0 \qquad \Rightarrow \quad \chi = \partial_{i}\pi^{i} \approx 0 \quad (\text{differential Gauss law})$ $\dot{\chi}^{A} = 0 \qquad \Rightarrow \quad \text{differential equation in the multiplier}$

• The multiplier $\lambda_{\mathcal{A}}$ is partially determined

$$\partial_r \lambda_A = -\frac{\epsilon e^2}{2\sqrt{\gamma}} \partial_r \tilde{\pi}_A - \frac{1}{2r^2} \nabla^B F_{AB} + \frac{\epsilon e^2}{2r^2} \partial_B \left(\frac{\pi^r}{\sqrt{\gamma}}\right)$$
$$\lambda_A = \bar{\lambda}_A + \Lambda_A(y)$$

- $\bar{\lambda}_A$ determined part of λ_A
- A free function $\Lambda_A(y)$ is due to the zero modes of Ω^{AB}

<ロト < 回 ト < 回 ト < 回 ト < 三 ト - 三 三</p>

Summary of the constraints

 $\begin{array}{ll} \mbox{Primary constraints:} & \pi^u \,, & \chi^A = \epsilon \pi^A - \frac{1}{e^2} \sqrt{\gamma} \gamma^{AB} F_{rB} \\ \mbox{Secondary constraint:} & \chi = \partial_i \pi^i \,. \end{array}$

Nature of the constraints

- π^u first class, A_u is a multiplier in the Hamiltonian
- χ first class, differential Gauss law, $\pi^i = \sqrt{\gamma} E^i$
- $\chi^{A}_{(0)}$ first class, r-independent part of the constraint
- $\chi^{\mathcal{A}}_{(n)}$ $(n\geq 1)$ second class, coefficients of the Taylor expansion in 1/r
- We have to expand all the fields asymptotically in the vicinity of the boundary r = const → ∞.

イロト 不得下 イヨト イヨト

Standard asymptotic conditions of the fields [Strominger 2014]

$egin{array}{cc} {A}_u &= \mathcal{O}(rac{1}{r}) , \end{array}$	$A_r = \mathcal{O}(rac{1}{r^2})$,	$A_{\mathcal{A}} = \mathcal{O}(r^0)$,
$\pi^u_{}=0$,	$\pi^{r}_{}=\mathcal{O}\left(r^{0} ight)$,	$\pi^{\mathcal{A}} = \mathcal{O}(rac{1}{r^2})$

• Boundary fields: $A_{(0)A}$, $\pi_{(0)}^r$

(日) (同) (三) (

Summary

1 st class constraints	Parameters	Generators	Charges
$\pi^{u}, \ \chi = \partial_{i}\pi^{i} \ \chi^{\mathcal{A}}_{(0)}$	$ heta_u, heta \\ \eta_A(y)$	$G[heta] S[\eta]$	$egin{aligned} & Q[heta] \ & Q_s[\eta] \end{aligned}$

• Smeared generators

 $\begin{array}{ll} G[\theta] &= \int \mathrm{d}^3 x \, \left(\theta \, \partial_i \pi^i + \theta_u \pi^u \right) & \text{standard } \mathrm{U}(1) \text{ symmetry} \\ S[\eta] &= \int \mathrm{d}^3 x \, \eta_A \chi^A & \text{asymptotic symmetry} \end{array}$

• Only first class constraints contribute to $S[\eta]$

 $S[\eta] = \int d^3x \eta_{(0)A} \chi^A_{(0)} + 0$

イロト イポト イヨト イヨト

• Transformation law of the fields

$$\begin{split} \delta_{\theta} A_{\mu} &= -\partial_{\mu} \theta , \qquad \delta_{\eta} A_{\mu} &= \epsilon \eta_{A} \delta_{\mu}^{A} \\ \delta_{\theta} \pi^{\mu} &= 0 , \qquad \qquad \delta_{\eta} \pi^{\mu} &= \frac{1}{e^{2}} \delta_{r}^{\mu} \sqrt{\gamma} \nabla_{A} \eta^{A} \end{split}$$

• $G[\theta]$ generates standard gauge transformations, $\delta A_{\mu} = -\partial_{\mu}\theta$ because $\theta_{\mu} = -\dot{\theta}$ [Castellani 1974]

 $\star \eta_A$ changes the boundary fields only

 $\delta_\eta A_{(0)A} = \epsilon \, \eta_A$, $\delta_\eta A_{(n)A} = 0$, $n \geq 1$ (similarly for π^r)

- Improper transformations: θ₍₀₎, η^A
 [Benguria, Cordero, Teitelboim 1977]
- They act on the boundary fields $A_{(0)A}$ and $\pi_{(0)}^r$

イロト イポト イヨト イヨト

Improved generators and charges

Improved generators

 $\begin{array}{ll} G_Q[\theta] &= G[\theta] + Q[\theta] & (Q[\theta] = \text{ surface term}) \\ S_Q[\eta] &= S[\eta] + Q_s[\eta] & (Q_s[\theta] = \text{ surface term}) \end{array}$

- Differentiability
- Boundary terms are chosen so that $\delta G_Q[\theta]$, $\delta S_Q[\eta]$ are well-defined
- Charges

 $Q[\theta] = -\oint d^2 y \, \theta \, \pi^r$ $Q_s[\eta] = \frac{1}{e^2} \oint d^2 y \, \sqrt{\gamma} \, \eta^A A_A$

- Infinite number of asymptotic global charges (Laurent coefficients).

<□> <同> <同> < 回> < 回> < 回> < 回> < 0 < 0

Charge algebra

- Reduced phase space: $G_Q[\theta] = Q[\theta], \ S_Q[\eta] = Q_s[\eta]$
- Abelian charge algebra

 $\{Q[\theta_1], Q[\theta_2]\} = 0$ $\{Q_s[\eta_1], Q_s[\eta_2]\} = 0$ $\{Q[\theta], Q_s[\eta]\} = C[\theta, \eta]$

- Central charge $C[\theta, \eta] = \frac{1}{e^2} \oint d^2 y \sqrt{\gamma} \eta^A \partial_A \theta \neq 0$
- Holographic conjugate pairs on \mathbb{S}^2 [Donnay,Puhm, Strominger 2019]

 $\{Q[heta], Q_s[\eta]\} = C[heta, \eta] \quad \leftrightarrow \quad \{q, p\} = 1$

 $Q[\theta]$ – conformally soft photon mode

 $Q_s[\eta]$ – Goldstone current

イロト 不得下 不良下 不良下 二日二

Mode expansion of the charge algebra

• Laurent series

$$\psi(z, \bar{z}) = \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} \frac{\psi_{nm}}{z^{n+h}\bar{z}^{m+\bar{h}}}$$

- The powers (h, \bar{h}) are related to the spin of the tensor ψ
- Scalars $\pi^r:(0,0)$
- Vectors $A_z: (1,0), A_{\bar{z}}: (0,1)$

Parameters	
θ_{nm}	
$\bar{\eta}_{nm}$	
η_{nm}	
	Parameters θ_{nm} $\bar{\eta}_{nm}$ η_{nm}

(PUCV)

23 / 34

• Algebra (non vanishing brackets only)

 $\{G_{nm}, S_{kl}\} = \kappa n \,\delta_{n+k,0} \delta_{m+l,0}$ $\{G_{nm}, \overline{S}_{kl}\} = \kappa m \,\delta_{n+k,0} \delta_{m+l,0}$

- Level of the algebra: $\kappa = \frac{4\pi^2}{e^2}$
- Change of the basis: $(G_{nm}, S_{nm}, \bar{S}_{nm}) \rightarrow (R_{nm}, J_{nm}, \bar{J}_{nm})$
- Generalization of the Kac-Moody algebra

$$\{J_{nm}, J_{kl}\} = \kappa (n-m) \,\delta_{n+k,0}\delta_{m+l,0}$$

$$\{\bar{J}_{nm}, \bar{J}_{kl}\} = -\kappa (n-m) \,\delta_{n+k,0}\delta_{m+l,0}$$

$$\{R_{nm}, J_{kl}\} = \kappa n \,\delta_{n+k,0}\delta_{m+l,0}$$

$$\{R_{nm}, \bar{J}_{kl}\} = \kappa m \,\delta_{n+k,0}\delta_{m+l,0}$$

$$\{R_{nm}, R_{kl}\} = \kappa (n+m) \,\delta_{n+k,0}\delta_{m+l,0}$$

Abelian Kac-Moody subalgebras

• We obtain six Abelian KM algebras $\{j_n, j_m\} = \kappa n \, \delta_{n+m,0}$

Currents j _n	Levels
J _{n0} , J _{0n}	κ, -κ
<i>J_{n0}, J_{0n}</i>	$-\kappa,\kappa$
R _{n0} , R _{0n}	κ, κ

- Non vanishing mixed brackets: $\{R_{n0}, J_{m0}\}, \{R_{0n}, \overline{J}_{0m}\} \neq 0$
- Each KM algebra is naturally generated by a current that is a holomorphic or anti-holomorphic function.
- + $\{J_{00}, \bar{J}_{00}, R_{00}\}$ span the global Abelian algebra $\mathrm{U}(1)^2$

イロト イポト イヨト イヨト

Beyond $U(1)\mbox{--}$ conformal symmetry

- Conformal plane a realization of conformal symmetry described by Virasoro algebra
- Virasoro algebra obtained from KM algebra using the Sugawara construction [Sugawara 1967]
- Four classical Virasoro generators

$$L_n = \frac{1}{2\kappa} \sum_k j_k j_{n-k}$$

・ロト ・四ト ・ヨト ・ヨト

- Four classical Virasoro algebras $\{L_n, L_m\} = (n-m) L_{n+m}$
- We can have all six Virasoro generators/subalgebras, but the full algebra becomes nonlinear.
- Quantization will introduce central extensions.

Comment

- We can also construct more inequivalent Virasoro algebras
- Example: Inspired by the Poincaré charge Q[i_ξA₍₀₎] ~ ∮ d²y π^r₍₀₎A_{(0)A}ξ^A, where ξ are the Killing vectors of the background Minkowski metric g_{µν}
- Virasoro generators (K_n, \bar{K}_n) :

 $K_{n} = \frac{1}{\kappa} \sum_{k} G_{k0} S_{n-k,0} = \frac{1}{2\kappa} \sum_{k} (J_{k0} + \bar{J}_{k0}) (R_{n-k,0} - J_{n-k,0})$ $\{K_{n}, K_{m}\} = (n-m) K_{n+m}, \qquad \{\bar{K}_{n}, \bar{K}_{m}\} = (n-m) \bar{K}_{n+m}$

- The generators (K_n, \bar{K}_n) are independent from $(L_n, \bar{L}_n, \mathcal{L}_n, \bar{\mathcal{L}}_n)$
- There is a richer symmetry structure than a usual CFT

イロト イポト イヨト イヨト

Yang-Mills theory

 $I[A] = -rac{1}{4g^2}\int \mathrm{d}^4x \sqrt{\mathfrak{g}}\,F^{\mu
u}_aF^a_{\mu
u}$

- Constraints $(\pi^u_a, \chi_a, \chi^A_a)$ non-Abelian generalization
- Constraint algebra

$$\begin{aligned} \left\{ \chi_{a}, \chi_{b}^{\prime} \right\} &= f_{ab}^{\ c} \, \chi_{c} \, \delta^{(3)} \\ \left\{ \chi_{a}, \chi_{b}^{\prime A} \right\} &= f_{ab}^{\ c} \, \chi_{c}^{A} \, \delta^{(3)} \\ \left\{ \chi_{a}^{A}, \chi_{b}^{\prime B} \right\} &= \Omega_{ab}^{AB}(x, x^{\prime}) \end{aligned}$$

• Non-Abelian symplectic matrix

$$\Omega^{AB}_{ab}(\mathbf{x},\mathbf{x}') = -\frac{2\epsilon}{g^2} \sqrt{\gamma} \gamma^{AB} \left(g_{ab} \partial_r + f_{abc} A_r^c \right) \delta^{(3)}$$

イロト イポト イヨト イヨト

Extension to Yang-Mills theory

• Zero mode

- Solution of $\partial_r V_A = -[A_r, V_A]$, with the bdry. condition $V_A|_{r \to \infty} = V_{(0)A}(y)$ $\Rightarrow V_A(x) = UV_{(0)A}(y)U^{-1}$, $U = e^{\int_r^{\infty} dr A_r}$
 - Charges

 $Q[\theta] = -\oint \mathrm{d}^2 y \, heta^a \pi^r_a$, $Q_s[\eta] = rac{1}{g^2} \oint \mathrm{d}^2 y \, \sqrt{\gamma} \, \eta^a_A A^A_a$

• Symmetry transformations

 $\delta_{\theta,\eta}A^a_u = \theta^a_u, \qquad \delta_{\theta,\eta}A^a_r = -D_r\theta^a, \qquad \delta_{\theta,\eta}A^a_A = -D_A\theta^a + \epsilon\,\eta^a_A$

• Non-Abelian charge algebra

$$\{Q[\theta_1], Q[\theta_2]\} = Q[[\theta_1, \theta_2]] \rightarrow Q \text{ is non-Abelian}$$

$$\{Q[\theta], Q_s[\eta]\} = Q_s[[\theta, \eta]] + \frac{1}{g^2} \oint d^2 y \sqrt{\gamma} \eta^A_a \partial_A \theta^a$$

$$\{Q_s[\eta_1], Q_s[\eta_2]\} = 0 \rightarrow Q_s \text{ is Abelian}$$

• Mode algebra

$$\begin{cases} G_{nm}^{a}, G_{kl}^{b} \\ G_{nm}^{a}, S_{kl}^{b} \end{cases} = f_{c}^{ab} G_{n+k,m+l}^{c}$$
$$\begin{cases} G_{nm}^{a}, S_{kl}^{b} \\ G_{nm}^{a}, \bar{S}_{kl}^{b} \end{cases} = f_{c}^{ab} \bar{S}_{n+k,m+l}^{c} + \kappa n g^{ab} \delta_{n+k,0} \delta_{m+l,0}$$
$$\begin{cases} G_{nm}^{a}, \bar{S}_{kl}^{b} \\ G_{nm}^{a}, \bar{S}_{kl}^{b} \end{cases} = f_{c}^{ab} \bar{S}_{n+k,m+l}^{c} + \kappa n g^{ab} \delta_{n+k,0} \delta_{m+l,0}$$

• Level $\kappa = \frac{4\pi^2}{g^2}$

- One can apply the Sugawara method again: $\{K_n, K_m\} = (n m)K_{n+m}$
- Symmetries at the asymptotic null boundary, described by KM algebras and Virasoro algebras, are general features of 4D gauge theories
- Nonlinear algebra of Virasoro generators generically appears

Image: A match a ma

Discussion

Degrees of freedom count

- Dirac formula $d.o.f. = N N_{1^{st} class} \frac{1}{2} N_{2^{nd} class}$
- Electromagnetism

$$\begin{array}{ll} A_{\mu} & N = 4 \\ \pi^{u}, \ \chi = \partial_{i}\pi^{i} & N_{1^{st}class} = 2 \\ \chi_{A} & N_{2^{nd}class} = 2 \end{array}$$

- d.o.f. = $4 2 \frac{1}{2}2 = 1$ WRONG!! d.o.f. = 2
- The Dirac formula is applicable only when the multipliers are either arbitrary (1st class constraints) or fully determined (2nd class constraints). [Henneaux, Teitelboim 1992]
- It fails when the multipliers satisfy a differential equation.
- In the null foliation: $\partial_r \lambda^A = f^A \quad \Rightarrow \quad \lambda^A = \Lambda^A(y) + \bar{\lambda}^A$

イロト 不得下 イヨト イヨト

Asymptotic conditions

- Invariance of boundary conditions under Poincaré transformatons is not straighforward
- Hamiltonian treatment at spatial infinity needs additional **parity conditions** to ensure invariance under boosts
- Electromagnetism [Henneaux, Troessaert 2018]
- Yang-Mills [Tanzi, Giulini 2020]
- Null-slices foliated standard b.c. are invariant under Poincaré group
- Electromagnetism [Bunster, Gomberoff, Pérez 2018]
- Yang-Mills [He, Mitra 2009]

イロト イポト イヨト イヨト

Poincaré transfromations

- We found several Kac-Moody algebras, but not all of them are related to the global Poincaré symmetry in 4D spacetime.
- Canonical generator of 4D Poincaré transformations

 $P[\xi] = \int d^3x T^u_{\ \mu} \xi^{\mu}$

• Differentiability of this generator is ensured by adding the boundary term $Q[\theta] + Q_s[\eta]$ with the parameters $\theta = i_{\xi}A_{(0)}$ and $\eta_A = \xi^u \Lambda_A$.

Symplectic structure

• Symplectic form $\omega = \int d^3 x \, \delta A_{\mu} \wedge \delta \pi^{\mu}$ is invariant under gauge and Poincaré transformations, for instance $i_{X_{\mu}}\omega = -\delta G_Q[\theta]$ and $i_{X_{\mu}}\omega = -\delta S_Q[\eta]$

$$X_{ heta} = \int \mathrm{d}^3 x \, \left(heta^u rac{\delta}{\delta A_u} - \partial_i heta \, rac{\delta}{\delta A_i}
ight), \quad X_{\eta} = \int \mathrm{d}^3 x \, \left(rac{\sqrt{\gamma}}{e^2} \,
abla_A \eta^A \, rac{\delta}{\delta \pi^r} + \epsilon \eta_A \, rac{\delta}{\delta A_A}
ight)$$

3

・ロト ・回ト ・ヨト ・ヨト

Acknowledgments

THANK YOU!

Acknowledgments

Anillo Grant ANID/ACT210100

Holography and its applications to high energy physics, quantum gravity and condensed matter systems

FONDECYT Grants N° 1190533 and N° 1231779

Black holes and asymptotic symmetries Holographic aspects of quantum field theories in flat and AdS spaces

34 / 34

(PUCV)

・ロト ・回ト ・ヨト