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I. Standard Model



Standard Model

( BEGH boson ?)

Matter (")

• Fermions, s=1/2

Gauge vectors
(fundamental rep.)

Lorentz spinors

Spacetime scalars
(zero forms)

• 1st order field eqs.

Interaction Carriers (A)

• Bosons S=1

Gauge connections
(adjoint rep.)

Lorentz scalars

• Spacetime vectors
(one-forms)

• 2nd order field eqs.



Conventional Grand Unified models tried to replace the SM 
symmetry group  by a (semi)simple Lie group that contains it:

!"# = SU 3 ×SU 2 × U 1 ⊆ !,-.

• Popular choices over the past 50 years included: 
SU 5 , SO 8 , SO 10 , supersymmetry (gravity excluded)

• More sophisticated approaches included gravity: 
supergravity, string theory.  



Matter (")

• Fermions, s=1/2

Gauge vectors
(fundamental rep.)

Lorentz spinors

Spacetime scalars
(zero forms)

• 1st order field eqs.

Standard Model

Interaction Carriers (A)

• Bosons S=1

Gauge connections
(adjoint rep.)

Lorentz scalars

• Spacetime vectors
(one-forms)

• 2nd order field eqs.

• Gauge connections
(adjoint rep.)

Is it possible to combine these two families as parts of a single object?

• Gauge vectors
(fundamental rep.)



2. Combining representations



An example from gravity

In gravity, the spin connection !"# = ! %"# &'% (adjoint) and the vielbein
(" = ( %" &'% (fundamental) can be combined as a connection of a larger group:

!"# (" )*+ =

Equivalently, 

Adjoint              Fundamental Adjoint 
SO(3,1)              SO(3,1) G4

!"# ("
−(# 0

. = )*+/*+
= 0

1!"#/"# + ("/"
Perhaps gauge connections (3) and matter fields (4) could also be combined 
into a single connection of dS4 or AdS4 . 

However, there are a couple of hurdles...

SO(3, 2),   AdS4
G4 =

SO(4 ,1),  dS4



(A)dS curvature: ! = #$ +$ ∧$ = !'()'(
where

!'( = *+, ± .+., /+
−/, 0

+ à AdS4
− à dS4

(A)dS-invariant Lagrangian?

2 = !'( ∧ 3'(45!45

Hurdle # 1 

Invariant tensor 
[for SO(3,2) or SO(4,1)] 

Hurdle # 1 (The enlarged symmetry might be absent)



- !"#$% (A)dS-invariant ⟹ ∫( = characteristic class (Chern-Weil theorem) 
⟹ No dynamics!

- Dynamics requires (A)dS symmetry to be broken

- Cheapest option: (A)dS4 à SO(3,1) ; !"#$% → *+,-.
( = *+,-.0+, ∧ 0-.= (23 + 55 + 67

( = 0"# ∧ !"#$%0$%

The (A)dS invariance might be a feature of some solutions, but not a 
gauge symmetry of the theory (action). Contingent symmetry 

We will find other examples of contingent symmetries in due course.



Hurdle # 2 (How to include s=1/2 fermions?) 

Observation: s =1/2 fields require a metric                                                                                                      

with Γ" = $%"Γ% , where Γ% , Γ' = 2)%' , and $%" is the inverse vielbein, 

$%"$'*+"* = )%' .                                                                                                                            

, = Γ"," , Γ" , Γ* = 2+"*

In the previous example both -%' and .% are 1-forms. 
Fermions in the SM, however, are 0-forms

Using the vielbein, one can turn the spin-1/2 field into a spinor 1-form,

/ = .%Γ%0 = Γ%0 ."%12" .

This will be useful in the construction... 



3. Unconventional idea



Combine a gauge connection Ar
μdxμ, the Lorentz connection ! "#$ %&"

and a spinor 1-form 'α = Γ# * +"#%&" into a single connection field:

This is still looks conventional

• Townsend, MacDowell & Mansouri SUGRA in 4D (1976)

• Achúcarro & Townsend Chern-Simons SUGRA in 3D (1986)

A ~ ArKr + Q, 'α+ ',Q, + ½! ab Jab+   …

Internal gauge 
generators

Complex SUSY 
generators

Lorentz 
generators

Needed to close 
the algebra



The only technical difference with those SUGRA models is the way the
fermion enters.

We take the spinor ! as a composite, !αμ ≡ Γ$ %
& '% (Matter Ansatz)

where Γ$ = Γ)*$) Standard s = ⁄, - spinor
,

Dirac matrices (tangent space)
Γ), Γ/ = 21)/2

Vielbein (soldering form) projects from tangent
space onto the spacetime manifold.

The spinor 1-form ! is completely determined by the spin-1/2 field

!$ = Γ$' ⟹ ' = ,
4Γ$!$



In standard Supergravity: Γ"#" = 0 è #αμ ∈ 1⊗ )
* =

+
* ⊕

)
*

Here #" = Γ"- and therefore 

./" − )
1 Γ/Γ

" #" = 0 è #αμ ∈ 1⊗ )
* =

+
* ⊕

)
*

Our approach is the opposite of standard SUGRA. We use the discarded 
spin-1/2 sector of Supergravity

A generic spinor 1-form belongs to a reducible representation 
#"2 ∈ 1⊗ )

* =
+
* ⊕

)
*



4. Actions



The action is the integral of a gauge-invariant D-form.

There are two standard options:
Chern-Simons (D = 2n+1 only)

and
Yang-Mills (any D )

where
⟨ ⟩ = invariant trace, and ⊛ ~ Hodge dual

I = L(∫ A)  = L∫ (A,ψ,...)

    

€ 

L2n+1 = A dA( )n +c1A
3 dA( )n−1+ ⋅ ⋅ ⋅+ cn A2n+1

F = d	A+ A A 

LYM = ⟨F ⋀⊛F ⟩



a. Example in 3 dimensions

Consider a connection for an algebra that include
internal U(1) x SU(2) spacetime and fermionic generators

A = iA+ AATA + 1
2ω

abJab +ψα
r (Γ)αβQr

β +Qα
r (Γ)αβψr

β

€ 

Jab → SO(1,2)

€ 

TA → SU(2)

€ 

Qr
β ,  Q α

r → SUSY

Superalgebra su(1,2|2)

i→U (1)



The superalgebra contains SO(1,2), U(1), SU(2) and SUSY,

SO(1,2):

SU(2):

SUSY:

€ 

Jab ,  Jcd[ ] =ηbcJad −ηacJbd +ηad Jbc −ηbd Jac,

Ti ,Tj[ ] = iεij
kTk ,        Tk ,  Jab[ ] = 0

Qr
α ,  Q β

s{ } = iδ β
α Ti (σ

i )r
s  + 1

2δr
sJab (Γab )  β

α +δβ
αδr

sZ

Jab ,  Qr
α[ ] = 1

2 (Γab )αβQr
β ;   Jab ,  Q α

r[ ] = − 1
2 (Γab )βαQ β

r ,   

Ti ,Qr
α[ ] = i(σ i )r

s Qs
α;   Ti ,Q α

r[ ] = −i(σ i )s
r Q α

s  ,

U(1)

The spacetime dimension severely restricts the possible superalgebras

[ For real/Majorana spinors, D=3 osp(2|N) ]



This ordinary-looking Lagrangian describes the long wavelength limit of graphene.
The only propagating degree of freedom is the spin-1/2 Dirac fermion.

L = 1
2 AdA+Tr[ 1

2AdA+ 1
3A

3]+ 1
2 [ω   b

a dω   a
b + 2

3ω   b
aω   c

bω   a
c ]

     −ψ( /∂ + i /A+ /A− 1
4 Γa /ω

abΓb )ψ e d
3x

     −ψψ  eaTa Torsional coupling (mass)

SU(2)-CS SO(1,2)-CS (gravity)

Dirac

U(1)-CS 

The Chern-Simons form defines a quasi-invariant gauge action for

where the bracket is the invariant trace in su(1,2|2) + u(1).
    

€ 

L = 1
2 AdA + 2

3 AAA

  

€ 

A
D=3



Field equations:

• Standard equations for CS SU(2), gravity and spin ½ in 2+1 dimensions.
€ 

δωab :             Rab = −2ψ ψeaeb                         (2)

€ 

δA :                   FA = i
2 εabcψ TAΓaψebec                (1)

                        (Fµν
A = εµνλ j

λA )

Fermion mass

• ψ acquires “mass” from torsion: µ=ηabeµ
aTνλ

bεµνλ

€ 

DT a = 0⇒ Ta = 1
6 µεabce

bec,   µ = const

€ 

δψ :          [ / ∂ + i / A - 1
4 γ

a / ω abγ
b + µ]ψ = 0             (3)!

"Γ$%$&Γ&

  

€ 

δea :      ψ εabcγ
c[
! 
d eb − eb

" 
d + 2iAeb ]ψ = 2ψ ψTa      (4)Γ'

⟹ )*$ = 0

The fermion mass is an effect of the background, not a parameter in the action. 



Minimal susy extension of su(2), so(3,1) leads to osp(4|2):

Curvature:

P.D.Alvarez, P.Pais, JZ, Phys.Lett. B735 (2014) 314  

SU(2)xU(1)
Internal symmetry

SO(3,2) 
anti - de Sitter

b. Example in 4 dimensions

A = "#$# + "& + '()Γ+) + +,Γ() + -./. + 0
1 2.3/.3

F = d	A+ A A 
= 6# $#+ 6& + '()F i +F i () + 6./. + 8

96.3/.3

'(:) , (<
= = >?:= [ A# )

< $# + ?B,&] + 8
9(Γ.) :

= /. − 8
9 Σ.3 :

= /.3 ?<)

Complex Dirac 
spinor

Required by 
the algebra



The superalgebra contains SO(1,2), U(1), SU(2) and SUSY:

so(3,2)

su(2): [ "# , "$ ] = ' (#$) ") , [ "# , +,-] = 0 = [ "# , +/]

susy: 012 , 304
5 = ' 64

2(8#): ;"# +
=
>
615(Γ@A)4

2 +@A + 61564
2B

+@A, 012 = C
D (Γ

@A)4
201

4, +@A, 3021 = ECD (Γ
@A)2

4304
1

"# , 012 = −'(8G) 15 052 , "# , 3021 = −'(8G) 51 3025

B , 012 = '012 , B , 3021 = −'3021

U(1)

su(2,2|2)

+/H, +IJ = K/J+HI − K/I+HJ + KHI+/J- KHJ+/I

+/H, +I = K/I+H − KHI+J, +/, +H = +/H
+/H +/

−+H 0
=+@A

so (3,2)

[ For real/Majorana spinors, D=4 osp(4|N) ]



Curvatures:

!" = $%" + '
()"*+ %* A+ − .

( /012"10

F i= $(10.) + 5%" 2" 6
. 06 + 7

8 Ω:;Γ:;0.

!= = $>= + '
(?=@>@ + '

( /0. 1 Γ=1 0.

!=@=A=@ + >=>@ − /0. 1 Γ=@ 1 0.

! = $% − .
B /0.1 1 0. U(1)

SU(2)

SUSY

SO(3,2)



For D = 2n, the only invariant 2n-forms without involving the Hodge dual are
characteristic classes (Chern-Weil theorem).
No locally SO(3,2)-invariant gravity in D = 4 [Townsend/MacDowell-Mansouri frustration]

è SO(3,2) is broken down to SO(3,1)

è Local SUSY must also be broken

è The largest surviving local symmetry is U(1) x SU(2) x SO(3,1)



Lagrangian: L4 = ⟨F ⋀⊛F ⟩

%& = −)&*+ ∧ ∗*+ + * ∧ ∗* + F / Γ1F / + )
234567*45*67

8 1 × ;8 2 × ;= 3,1 - invariant trace

∗ Internal

Γ1 Fermions

34567 Spacetime
• Hodge dual ⊛ =

• ∄ Osp(4|2) or SO(3,2)-invariant traces in 4D. The biggest symmetry group with an
invariant trace is ;8 2 ×8(1)×;= 3,1 è Largest gauge symmetry of the action.

• C4 is an auxiliary field à Townsend’s choice:
à Conformal (scale) symmetry is broken

CD4 = E FD4



4D Lagrangian
L= - 1

4{ FµνF
µν

    + i
2 [ψ /
!
∇ψ −ψ /

!
∇ψ]+ψΓ5ΓaT

aψ

    + µ−2[(ψψ)2 − (ψΓ5ψ)2]} −gd 4x

    - 1
16εabcd [R

ab-µ 2eaeb][Rcd -µ 2eced ]

Maxwell / YM

Dirac

Nambu-Jona Lasinio

Einstein-Hilbert + cc

✓ Phenomenology for low energy, 4D theory 

−" −"
Standard couplings:

No - terms: fermions behave as standard matter

Cosmological constant Λ ~

Newton’s constant G ~ µ-2

€ 

∂µ∂νψ

€ 

∇ν = ∂ν − iAν + 1
4 Γabων

ab − iµ
2 Γν

\−"2

"#$

−"#%



Other 4D U-SUSY models 

Extended superconformal:
• !" 3,1 ×!' 5 )×!' 5 *+ ⊆ su 2,2 01 [Georgi−Glashow]
J.Math.Phys.63(2022)042304, JHEP02(2023)050 

Superconformal:
• !" 3,1 × !' 2 ×' 1 ⊆ su 2,2 2 JHEP07(2020)205

• !" 3,1 × !' N ×' 1 ⊆ su 2,2 N JHEP07(2021)176, JHEP02(2022)111 

[Here chiral symmetry is broken by the AdS vacuum: Λ ≠ 0 ⇒ 78 ≠ 79 ]

Dimensional reduction from 5D CS.
Y.Gómez, J.Helayel-Neto, Phys.Lett. B777 (2018)275



5. SUSY as a contingent symmetry



{Q,Q}~ T + J

Internal gauge symm.
[T, T] ~ T

External (spacetime) symm
[J,J] ~ J

[J, T] = 0

[T, Q] ~ Q[J, Q] ~ Q

The fermionic sector belongs to fundamental irreps of the internal and
spacetime gauge groups: matter couples to all gauge fields including gravity.

è Fermions provide a bridge between internal and spacetime symmetries

Underlying supersymmetry

Matter 
(fermions) 

couples to both

Internal
Spacetime



Does this mean that the action is supersymmetric?

SUSY transformation

For the algebra to close, the system should also be invariant under the AdS
boosts, but they are no longer symmetries: 

• The spacetime invariance of the action is SO(3,1), not SO(3,2)
• )* is no longer a gauge field but an auxiliary field
• The action is not supersymmetric

+,-. =	12 ̅4Γ-6.7+ 97Γ-6.4
+: -*; = ̅4Γ-Γ*;6.7+ 97Γ*;Γ-6.4
+7 = <

=∇4 , +? -* = 0



SUSY transformations can leave the vacuum (! = 0) unchanged, provided

$%& − (
) Γ%Γ

& ∇&, = 0 . 

This generically requires the background to admit Killing spinors [∇, = 0].
There might exist SUSY-invariant states (e.g., BPS vacua), similar to Poincaré
or AdS-invariant ones. But SUSY would not be an invariance of the action. 

è SUSY would be a contingent symmetry (depends on the vacuum).

Local SUSY could be an approximate symmetry for some configurations 
or in asymptotic regions, like Poincaré or AdS invariance. 



6. Overview



Ingredients (Input):

• AdG + FundG ⊂ Ad%& ; G ⊆ %G

• Superconnection:
A = [ ()*

+,-+, + ⋯ ] + [12343 + 4̅323] +   [ 7898 ] 
spacetime charged internal 
symmetry fermion symmetry

• Matter ansatz:  4:3 = (Γ:) ?3 @?,   AB
: − (

DΓBΓ
: 4: ≡ 0

• Invariant trace for the largest subgroup: ⟨...⟩

• Hodge dual ⊛ (required for even D	)



The role of SUSY: a guiding principle

• It connects spacetime and internal groups that can be combined

• Superalgebra fixes gauge couplings

• Brings in gravity

• Supersymmetry algebra is eventually broken down to  
(Internal gauge group) x (Lorentz group)

• Invariance under entire supergroup for some vacua: BPS states



Consequences of the construction:
All fields are part of the same superconnection A

(matter) - sections
(interactions) - connections

Only standard kinetic terms (Yang-Mills, Dirac, Chern-Simons)

Only s = ½,1 fundamental fields (s =0, 3/2, 2 can be composite)

Not all internal and spacetime symmetries can be combined

Only standard gauge couplings (~ "# $ # ✓, "# $%$&$'#✘)
(Bare) coupling constants and masses are fixed

No SUSY pairs, no matching d.o.f., no hidden sectors

Only Lorentz & internal symmetries are gauge symmetries (SUSY is contingent)

Packaged into a single 
gauge connection



Nice things about this approach:

- All fields are part of the same connection A
- Given D and the spacetime signature the algebra is very restricted
- Only s = ½,1 fundamental fields (s =0, 3/2, 2 can be composite)
- Gravity is unavoidably included
- General covariance automatically built in
- Right kinetic terms, right couplings
- Breaks symmetry by frustration, not spontaneously
- The respected symmetry is always [local Lorentz] x [internal gauge]
- SUSY is a contingent symmetry at most 
- Provides a N-JL term in 4D à mass gap, neutrino oscillations 
- It is falsifiable (it can be proven wrong)
- It is simple!



Challenges/open questions:

- Observable effects (e.g., in graphene)
- Classical solutions
- Topologically nontrivial vacua
- Renormalizability
- Neutrino masses
- Proton decay
- Anomalies
- Hierarchy
- Matter ansatz in SUGRA:

!" #Γ#%&∇%"& = )*+ )*,
, !- . -

There might be a U-SUSY lurking in every SUGRA theory...



This could be a model for the microscopic world at the current experimentally accessible
energies. We do not pretend to have the ultimate description of nature at the most
fundamental level.

At that level, differentiability of spacetime and Lorentz invariance may not exist, and new
interactions could be relevant. But spacetime is currently well described by a smooth four-
dimensional manifold of Lorentzian signature and matter is accurately described by Fermions
in irreps of SO(3,1).

Thanks!


