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Exciting times for black holes…

• September 2015: GW150914     
(first detection of BBH coalescence)

[arXiv:1602.03837]

• April 2019: direct image of the 
shadow of M87* SMBH

[Image credit: EHT]



Current gravitational wave detectors

[Image credit: LIGO collaboration]





Pulsar Timing Array

Laser Interferometer Space Antenna (LISA)

Einstein Telescope [Image credit: LISA consortium]

[Image credit: ET collaboration]

[Image credit: David J. Champion]



[Image credit: NASA Goddard Space Flight Center]



The two body problem in GR

• Extreme Mass Ratio 
Inspirals (EMRIs):

• Obtain precise
waveform models is a 
community-scaled
effort!



Extreme mass ratio inspirals physics @ ULB

Environemental effects
(L. Machet)

Self force and transition
(L. Küchler, G. Lhost)

Finite size effects
(A. Druart)

[Credit: NASA]

G. Compère



Finite size effects: equation of motion
• Secondary modelled as moving on a single worldline…

• …but is not a point particle => finite size effects (spin, tidal deformability…)
• ‘‘Forced geodesic equation’’ description, finite size effects as perturbation to 

geodesic motion
• GSF/finite size effects arise at the same order in the small mass ratio 

expansion



Finite size effects: observational motivations

[Warburton et al. 2017]

• LISA parameter extraction requires

• Orbital phase [Flanagan and Hinderer 2008]



Plan of the talk

I. Kerr metric and its geodesics

II. Test bodies in curved spacetime

III. Conserved quantities

IV. Hamiltonian formulation



I. Kerr metric and its geodesics



Kerr metric
• Most generic asymptotically-flat and stationary solution of vacuum 

Einstein equations

• Two free parameters: mass M and spin a, satisfying
• Stationary and axisymmetric: two Killing vectors

[Kerr 1963]



In my entire scientific life, extending over forty-five years, the most 

shattering experience has been the realization that an exact 

solution of Einstein's equations of general relativity, discovered by 

the New Zealand mathematician Roy Kerr, provides the absolute 

exact representation of untold numbers of massive black holes that 

populate the universe. This “shuddering before the beautiful,” this 

incredible fact that a discovery motivated by a search after the 

beautiful in mathematics should find its exact replica in Nature, 

persuades me to say that beauty is that to which the human mind 

responds at its deepest and most profound level.

S. ChandrasekharAlso impressive (in my opinion) is the possibility of 
solving explicitly numerous problems in Kerr spacetime !



Geodesic equations in Kerr are separable !
• Hamiltonian for geodesic motion

• Hamilton-Jacobi equation separated and solved by B. Carter in 1968

• Carter constant

[Carter 1968]



Constants of motion and integrability (I)
• Mass µ conserved
• Two Killing vectors => two quantities conserved along geodesic motion

• Carter constant is related to the existence of a hidden symmetry of Kerr 
spacetime

• Rank-2 Killing tensor, originating from a rank-2 Killing-Yano tensor



Constants of motion and integrability (II)

• Killing-Yano tensors more fundamental objects than Killing 
tensors

=> see later conserved quantities for spinning bodies
• N=4 Hamiltonian system + 4 independent constants of the 

motion in involution 
=> completely integrable 

• Explicit solutions + classification of Kerr geodesic obtained



Action-angle variables formulation
• Kerr  (radially) bounded geodesic motion in 

periodic in its radial, azimutal and polar 
directions

• Periodicity made explicit using generialized
action-angle variables

such that

• Generalizable to self-forced motion [Flanagan and 
Hinderer 2008]

[Credit: Maarten van de Meent]

[Schmidt 2002, Flanagan and Hinderer 2008]



Take home message from Part I
• Kerr  (radially) bounded geodesic motion is

• triperiodic
• separable
• integrable

Generalization of these properties
if one includes finite size effects ?



II. Test bodies in curved spacetime



Gravitational skeletonization
• Compact body: 
• Replace the body smooth stress-

energy tensor by a collection of 
multipole moments defined on a 
single worldline

• EOMs follow from
• lth multipole scales as

[Mathisson 1937, Papapetrou 1951, Tulczyjew 1959, Dixon 1973-79]

l=0 monopole

l=1 dipole

l=2 quadrupole

… 



Lagrangian formulation
[Hanson and Regge 1974, Bailey and Israel 1975]

• Body modelled as a worldline endowed with an 
orhtonormal tetrad

• Backgroud tetrad for ‘‘reading’’ the orientation

• Symmetry arguments allow to write

• Approximations <-> dependence of L in the Riemann tensor



Mathisson-Papapetrou-Dixon equations
• Both formulations lead to the MPD equations

• Interpretation of the linear momentum and the spin tensor
• Skeletonization: multipole moments of the stress-energy tensor

• Lagrangian: momenta conjugated to 4-velocity and rotation coefficients

• Spin magnitude                                   exactly conserved



Spin supplementary conditions
• 14 DOFs for 10 equations => system is not closed…

• Physical origin of the problem
• Skelelonization: unspecified worldline
• Lagrangian: only rotational DOFs of Lorentz tfo matter

(boosts <=> gauge DOFs)

• Common choice: Tulczyjew-Dixon Spin Supplementary
Condition (TD SSC)

• TD SSC + proper time: 4 additional constraints => 
closed system (relation between v and p)

• Specify the COM of the object (observer dependent)
[Steinhoff 2015]

[Kyrian and Semerák 2007]



Quadrupole approximation and astrophysics
• Quadrupole moment is not a dynamical variable => need for a prescription
• Discard tidal-type quadrupole deformations (BBH system)
Spin-induced quadrupole: most generic, well behaved quadrupole moment 
induced by the spin [Steinhoff 2014, Marsat 2015]

• Coupling ĸ depends on the nature of the object (ĸ=1 for BH, 4<ĸ<8 for NS)
=> motion of test bodies not anymore universal @ quadrupole

• Perturbative expansion in S for astrophysically coherent systems, since



III. Conserved quantities



Rüdiger’s procedure for conserved quantities
1. Postulate an Ansatz

2. Write down the conservation equation
3. Expand the conservation equation using 

the equations of motion
4. Express the conservation equation in terms 

of independent variables
5. Infer the independent constraints
6. Find solutions (and prove uniqueness)



Example: geodesic motion
1. Assume the form of the invariant (polynomial)

2. Plug it into the conservation equation

3. Use EOMs to reduce it

4. Infer the constraints

5. Solve them !

‘‘Symmetry implies conservation’’
(textbook picture)

‘‘Conservation requires symmetry’’
(Rüdiger picture)



Status @ first order in the spin magnitude
• Conservation understood in a perturbative

sense:
• Mass of the body µ conserved
• For any Killing vector [Dixon 1979]

• In Ricci-flat spacetimes admitting a KY 
tensor [Rüdiger 1981-83]

• Unique in Kerr spacetime [Compère and AD 2021]

‘‘linear’’ Rüdiger

‘‘quadratic’’ Rüdiger



Status @ second order in the spin magnitude
• E, L, S still conserved
• Shifted mass-like quantity

• ‘‘Hidden conserved quantities’’ require
a new formalism

• For quadrupole BH coupling, linear
Rüdiger still conserved + unique 
deformation of Carter constant

• No polynomial solution for other
couplings

[Compère, AD and Vines 2023]

Integrability ?



IV. Hamiltonian formulation



Symplectic structure and canonical coordinates
• 14D phase space, endowed with

explicit PB structure
• Canonical coordinates for the 

position sector [Feldman et al. 1980]

• Spin sector is more involved
[Witzany et al. 2019]

• Equivalent, SSC free formulation 
by Ramond [Ramond 2022]

• TD SSC and mass-shell condition are 
first class constraints [Steinhoff 2015]



Spinning particles: various Hamiltonians
• ‘‘Coordinate time’’ Hamiltonians: useful for PN applications [Barausse et al. 2009,  

Vines et al. 2016]

• ‘‘Covariant’’ Hamiltonians more practical here
• First order in the spin magnitude [Witzany et al. 2019]

• Second order in the spin magnitude, TD SSC with spin-induced quadrupole
[AD and Ramond, to appear]



Integrability ?
• Schwarzschild integrable at first order [Ramond 2022]

• Numerical studies in Schwarzschild [Zelenka et al. 2019] 
suggest that chaos arise in Schwarzschild at second 
order in the spin magnitude

• All feature of non-integrable perturbations visible 
(c.f. KAM theorem)

• Kerr non-integrable at linear order [Compère and AD 2021]

[Zelenka et al. 2019]

Schwarzschild Kerr

Linear integrable non integrable

Quadratic non integrable non integrable



Hamilton-Jacobi equation (I)
• Carter constant related to separability of HJ equation. What is the situation 

for MPD equations ?

• Problem as a perturbation above geodesic motion: geodesic adapted tetrad

• HJ equation is separable in the ‘‘swing region’’

• Separation constant is Rüdiger quadratic invariant, and

[Witzany 2019]



Hamilton-Jacobi equation (II)
• Near the turning points, HJ equation is no more separable, but solvable as

• Allows to provide corrections to the (radial and polar) turning points of the 
motion and to the fundamental frequencies of action-angle variables

[Witzany 2019]

[Witzany 2019][Witzany 2019]



Conclusion and outlooks

=> Compute the shifts in turning points and frequencies @ second order

Schwarzschild Kerr

Linear integrable non integrable

Quadratic non integrable non integrable

Conjecture. Hamilton-Jacobi equation for MPD equations (TD SSC + spin induced
quadrupole with ĸ=1 BH coupling) is separable in the swing region at second order in
the spin magnitude. The separated solution has the same form as at linear order, but
the separation constant is the new quadratic invariant. [AD, to appear]

=> more analytical investigations ?



Kerr is fun !!

Thanks for your attention !

Questions ?


